if cosA + sinA = 1, prove that cosA - sinA = +or-1
Answers
Answered by
1
cosA + sinA = 1
squaring both side we get
(cosA + sinA)^2 = 1
cos^2A + sin^2A + 2sinAcosA = 1
1 + 2sinAcosA = 1
2sinAcosA = 0
now
(cosA - sinA)^2 = cos^2A + sin^2A - 2sinAcosA
(cosA - sinA)^2 = 1 - 2sinAcosA
but 2sinAcosA = 0
(cosA - sinA)^2 = 1
square root both side we get
cosA - sinA = +1 or -1
Similar questions