if cosA+sinA = √2 cosA, prove that cosA-sinA = √2 sinA.
Answers
Answered by
30
HELLO DEAR,
cosA+sinA=√2 cos A
SQUARING Both side
we get,
cos²A +sin²A + 2cosA sinA =2cos²A
=> 2cosAsinA=2cos²A- cos²A - sin²A
=> 2cosAsinA =cos²A-sin²A
[adding both side "sin²A"]
=> 2cosAsinA +sin²A =cos ²A -sin²A + sin²A
=> sin²A+sin²A=cos²A+sin²A -2cosAsinA
=> cos²A+sin²A -2cosAsinA =sin²A+sin²A
=> (cosA-sinA)² = 2sin²A
=> cos A -sinA =√2sinA
I HOPE ITS HELP YOU DEAR,
THANKS
cosA+sinA=√2 cos A
SQUARING Both side
we get,
cos²A +sin²A + 2cosA sinA =2cos²A
=> 2cosAsinA=2cos²A- cos²A - sin²A
=> 2cosAsinA =cos²A-sin²A
[adding both side "sin²A"]
=> 2cosAsinA +sin²A =cos ²A -sin²A + sin²A
=> sin²A+sin²A=cos²A+sin²A -2cosAsinA
=> cos²A+sin²A -2cosAsinA =sin²A+sin²A
=> (cosA-sinA)² = 2sin²A
=> cos A -sinA =√2sinA
I HOPE ITS HELP YOU DEAR,
THANKS
InnocentBachiNo1:
obviously, it helps me a lot ;)
Similar questions