Math, asked by XxBIPULxX, 1 month ago

If cosA = \frac{a}{\sqrt{a^{2}+b^{2} } } , prove that: asinA = bcosA.

Answers

Answered by senboni123456
12

Step-by-step explanation:

We have,

 \rm \cos(A)  =  \frac{a}{ \sqrt{ {a}^{2}  +  {b}^{2} } }  \\

So,

 \rm \sin(A) =  \sqrt{1 -  \cos ^{2} (A) }   =    \sqrt{1 -  \bigg(\frac{a}{ \sqrt{ {a}^{2}  +  {b}^{2} } } \bigg)^{2}  } \\

 \rm  \implies\sin(A) =    \sqrt{1 -  \frac{a^{2} }{  {a}^{2}  +  {b}^{2}  }   } \\

 \rm  \implies\sin(A) =    \sqrt{\frac{ {a}^{2} +  {b}^{2}  -  a^{2} }{  {a}^{2}  +  {b}^{2}  }   } \\

 \rm  \implies\sin(A) =    \sqrt{\frac{   {b}^{2}   }{  {a}^{2}  +  {b}^{2}  }   } \\

 \rm  \implies\sin(A) =    \frac{  b  }{ \sqrt{  {a}^{2}  +  {b}^{2}  }}    \\

Now,

 \rm  \implies \: a\sin(A) =    \frac{  ab  }{ \sqrt{  {a}^{2}  +  {b}^{2}  }}    \\

 \rm  \implies \: a\sin(A) =b \bigg(    \frac{  a  }{ \sqrt{  {a}^{2}  +  {b}^{2}  }} \bigg)    \\

 \rm  \implies \: a\sin(A) =b \bigg(    \cos(A) \bigg)    \\

 \rm  \implies \: a\sin(A) =b    \cos(A)    \\

Similar questions