If cose
= 12/13, find 2 sin theta - 4 tan theta ehere theta is acute
Answers
Answered by
0
Given, Cosec ¢ = 12 / 13
Cosec ¢ = Hypotenuse / Perpendicular
So, we get,
H = 12 units
P = 13 units
Now using PYTHAGORA'S THEOREM,
H^2 = P^2 + B ^2
12 ^2 = 13^2+ B ^2
B ^2 = 13 ^2 - 12 ^2
B ^2 = 169 - 144
B ^2 = 25
B = 5 Units.
Now, Sin ¢ = 1 / cosec ¢ = 1 / 12 / 13 = 13 / 12
Tan ¢ = Perpendicular / Base = 13 / 5
2 sin ¢ - 4 tan ¢ = 2 ( 13 / 12 ) - 4 ( 13 / 5 )
=> ( 13 / 6 ) - ( 52 / 5)
=> ( 65 - 312) / 30
=> - 247 / 30
Cosec ¢ = Hypotenuse / Perpendicular
So, we get,
H = 12 units
P = 13 units
Now using PYTHAGORA'S THEOREM,
H^2 = P^2 + B ^2
12 ^2 = 13^2+ B ^2
B ^2 = 13 ^2 - 12 ^2
B ^2 = 169 - 144
B ^2 = 25
B = 5 Units.
Now, Sin ¢ = 1 / cosec ¢ = 1 / 12 / 13 = 13 / 12
Tan ¢ = Perpendicular / Base = 13 / 5
2 sin ¢ - 4 tan ¢ = 2 ( 13 / 12 ) - 4 ( 13 / 5 )
=> ( 13 / 6 ) - ( 52 / 5)
=> ( 65 - 312) / 30
=> - 247 / 30
Similar questions