If cosec 0 + cot 0 =p, then prove that cos 0 = ( p^2 -1) / (p²+1)
Answers
Answered by
13
Given:
Cosec 0 + Cot 0 = p ——> 1
We know that
Cosec^20 - Cot^20 = 1
(Cosec 0 + Cot 0)*(Cosec 0 - Cot 0) = 1
p*(Cosec 0 - Cot 0) = 1 [From 1]
Cosec 0 - Cot 0 = 1/p ——> 2
Adding Equations 1 & 2,
(Cosec 0 + Cot 0) + (Cosec 0 - Cot 0) = p + (1/p)
2Cosec 0 = (p^2 + 1)/p ——> 3
Subtracting Equations 1 & 2,
(Cosec 0 + Cot 0) - (Cosec 0 - Cot 0) = p - (1/p)
Cosec 0 + Cot 0 - Cosec 0 + Cot 0 = p - (1/p)
2Cot 0 = (p^2 - 1)/p ——> 4
Divide 4 by 3,
2Cot 0 (p^2 - 1)/p
———- = —————
2Cosec 0 (p^2 + 1)/p
Cot 0 (p^2 - 1)
———- = ————
Cosec 0 (p^2 + 1)
Cos 0 * Sin 0 (p^2 - 1)
——————— = —————
Sin 0 (p^2 + 1)
Cos 0 = (p^2 - 1)/(p^2 1)
Hence Proved
Cosec 0 + Cot 0 = p ——> 1
We know that
Cosec^20 - Cot^20 = 1
(Cosec 0 + Cot 0)*(Cosec 0 - Cot 0) = 1
p*(Cosec 0 - Cot 0) = 1 [From 1]
Cosec 0 - Cot 0 = 1/p ——> 2
Adding Equations 1 & 2,
(Cosec 0 + Cot 0) + (Cosec 0 - Cot 0) = p + (1/p)
2Cosec 0 = (p^2 + 1)/p ——> 3
Subtracting Equations 1 & 2,
(Cosec 0 + Cot 0) - (Cosec 0 - Cot 0) = p - (1/p)
Cosec 0 + Cot 0 - Cosec 0 + Cot 0 = p - (1/p)
2Cot 0 = (p^2 - 1)/p ——> 4
Divide 4 by 3,
2Cot 0 (p^2 - 1)/p
———- = —————
2Cosec 0 (p^2 + 1)/p
Cot 0 (p^2 - 1)
———- = ————
Cosec 0 (p^2 + 1)
Cos 0 * Sin 0 (p^2 - 1)
——————— = —————
Sin 0 (p^2 + 1)
Cos 0 = (p^2 - 1)/(p^2 1)
Hence Proved
Answered by
12
Answer:
proved......
Step-by-step explanation:
see it in attachment...
mark it as brainlist......
Attachments:
Similar questions