Math, asked by tehsiniqbl, 11 months ago

plz.simply with detail ​

Attachments:

Answers

Answered by ihrishi
1

Answer:

 \frac{1}{x - 1}  -  \frac{1}{x  + 1} -  \frac{2}{x^{2}   + 1} -  \frac{4}{x ^{4}   + 1}  \\  = \frac{(x + 1) - (x - 1)}{(x - 1)(x  + 1)}  -  \frac{2}{x^{2}   + 1} -  \frac{4}{x ^{4}   + 1}  \\= \frac{x + 1 - x  +  1}{x ^{2}  - 1}  -  \frac{2}{x^{2}   + 1} -  \frac{4}{x ^{4}   + 1}  \\= \frac{2}{x ^{2}  - 1}  -  \frac{2}{x^{2}   + 1} -  \frac{4}{x ^{4}   + 1}\\= \frac{2(x^{2}   + 1) - 2(x^{2}    -  1)}{(x ^{2}  - 1)(x^{2}   + 1)}   -  \frac{4}{x ^{4}   + 1} \: \\= \frac{2x^{2}   + 2 - 2x^{2}     + 2}{x ^{4}  - 1}   -  \frac{4}{x ^{4}   + 1} \: \\= \frac{4}{x ^{4}  - 1}   -  \frac{4}{x ^{4}   + 1} \: \\= \frac{4(x ^{4}   + 1) - 4(x ^{4}    -  1)}{(x ^{4}  - 1)(x ^{4}   + 1)}    \: \\= \frac{4x ^{4}   + 4 - 4x ^{4}     + 4}{x ^{8}  - 1}    \:  \\ = \frac{8}{x ^{8}  - 1}

Similar questions