Math, asked by Anonymous, 5 months ago

if cosec 0 - sin 0=a sec 0 -cos 0=b,prove that a²b²(a²+b²+3)=1
NO SPAMS​​

Answers

Answered by Anonymous
3

Answer:Given:

cosecθ - sinθ = a³   -(1)

secθ - cosθ = b³.     -(2)

To find:

Solution to a²b²(a² + b²)

Answer:

By solving these equations by rewriting cosec as inverse of sin and sec as inverse of cos, we get values for a^2 and b^2.

Equation 1,

\frac{1}{sin x} - sin x =a^{3}

\frac{1 - sin^{2} x}{sin x} =a^{3}

(\frac{cos^{2} x}{sin x})^{2/3} =(a^{3} )^{2/3}

\frac{cos^{4/3} x}{sin ^{2/3} x} = a^{2}   -(3)

Equation 2,

secθ - cosθ = b³

\frac{1}{cos x} - cos x = b^{3}

(\frac{1 - cos^{2}  x}{cos x} )^{2/3} = (b^{3})^{2/3}

\frac{sin ^{4/3} x}{cos ^{2/3} x} = b^{2}    -(4)

Multiplying 3 and 4,

a^{2} b^{2} = sin^{2/3} x  .cos^{2/3} x   -(5)

Adding 3 and 4,

We also get values of a²+ b²

a^{2}  + b^{2} = \frac{cos^{4/3} x}{sin^{2/3} x} + \frac{sin ^{4/3} x}{cos^{2/3} x}      -(6)

By multiplying  5 and 6 we get

a^{2}b^{2} (a^{2} +b^{2} ) = \frac{1}{sin ^{2/3} x cos ^{2/3} x} * sin^{2/3} x  * cos^{2/3} x

a²b²(a² + b²)= 1

Step-by-step explanation:

Similar questions