Math, asked by Anonymous, 11 months ago

If cosec 0 - sin 0 = l and sec 0 - cos 0 = m, prove that + m² (l+ m² +3)=1 .

Answers

Answered by Anonymous
18

HEY MATE YOUR ANSWER IS HERE.....

as the question says

( let theta be x )

 \cosec x \:  -  \sin \: x = l \\ and \:  \\  \sec \: x \:  -  \cos \: x = m

NOW ...

cosec \: x  \:  -  \: sin \: x \:  = 1

 \frac{1}{sin \: x}  - sin \: x \:  = l

 \frac{1 -  {sin}^{2}x }{sin \: x}  = l

 \frac{ {cos}^{2}x }{sin \: x}  = l

NOW ..

sec \: x \:  -  \:  \: cos \: x = m

 \frac{1}{cos \: x}  -  \: cos \: x = m

 \frac{1 -  {cos}^{2}x }{cos \: x}  =  \: m

 \frac{ {sin}^{2} x}{cos \: x}  =  \: m

NOW TAKING L.H.S...

l²m²( ++3)

( \frac{ {cos}^{4}x }{ {sin}^{2}  \: x})( \frac{ {sin}^{4} \: x }{ {cos}^{2} x})  (\frac{ {cos}^{4}x }{ {sin}^{2} \: x} + \frac{ {sin}^{4} \: x }{ {cos}^{2} x} \:  + 3)

( {cos}^{2} x \:  {sin}^{2} x)( \frac{ {cos}^{6}  +  {sin}^{6} \:  + 3 {sin}^{2}x \:  {cos}^{2}x   }{ {sin}^{2}  {cos}^{2} } )

CUT SIN ²X COS²X .......

NOW ...

 {cos}^{6}  +  {sin}^{6} \:  + 3 {sin}^{2}x \:  {cos}^{2}x

can be written as....

(( { {cos}^{2}x })^{3}  +  ({ {sin}^{2}x })^{3}  )+ 3 {sin}^{2} x \:  {cos}^{2}x

USING IDENTITY....

+ = (a + b ) ( + + ab )

(( {cos}^{2} x \:  +  {sin}^{2} x)( {sin}^{4} x \:  +  {cos }^{4} x -  {sin}^{2} x \:  {cos}^{2} x)) + 3 {sin}^{2} x \:  {cos}^{2} x

NOW

sin²x + cos ² x = 1

THEN

(  { {sin}^{2}x) }^{2} + ( { {cos}^{2} }x)^{2}    -  {sin}^{2} x \:  {cos}^{2} x) + 3 {sin}^{2} x \:  {cos}^{2} x

then

+= (a+b)²- 2ab

(  ({ {sin}^{2}x }+ { {cos}^{2} }x)^{2}     - 2 {sin}^{2}x \:  {cos}^{2} x) -  {sin}^{2} x \:  {cos}^{2} x) + 3 {sin}^{2} x \:  {cos}^{2} x

AGAIN SIN²+ COS²= 1

THEN ( SIN ²+COS²)² = 1² = 1

(  1- 2 {sin}^{2}x \:  {cos}^{2} x -  {sin}^{2} x \:  {cos}^{2} x) + 3 {sin}^{2} x \:  {cos}^{2} x \:

1 - 3 {sin}^{2} x \:  {cos}^{2} x  + 3 {sin}^{2} x \:  {cos}^{2} x \:

= 1

L.H.S = R.H.S

THANKS FOR THE QUESTION...

HOPE IT HELPS

KEEP SMILING ☺️☺️☺️

Answered by suman5420
2

Hope this helps you.

Thank you

Attachments:
Similar questions