if cosec A = 17/8,tgen verify that 3-4sin^2A/4cos^2a-3=3-tan^2A/1-3tan^2A THE FIRST ANSWER WILL BE BRAINLIEST
Answers
Answered by
2
Step-by-step explanation:
show that =
4cos
2
A−3
3−4sin
2
A
=
1−3tan
2
A.
3tan
2
A
Given sec A =
8
17
We know, sec A =
Base
Hypotenuse
=
8
17
So, draw a right angled triangle PQR, right angled at Q such that ∠ PQR = A
Base QR = 8 and Hypotenuse PR = 17
Using Pythagoras Theorem in Δ PQR
PR² = PQ² + QR²
⇒ (17)² = PQ² + (8)²
⇒ 289 = PQ² + 64
⇒ PQ² = 289 - 64
⇒ PQ² = 225
⇒ PQ = 15
L.H.S. = 3-4sin²A/4cos²A-3
⇒ 3-4(15/17)²/4(8/17)² - 3
⇒ 3-4×(225/289)/4×(64/289) - 3
⇒ {(867-900)/289}/{(256-867)/289}
⇒ -33/289 × 289/-611
= 33/611
R.H.S = (3-tan²A)/(1-3tan²A)
⇒ 3-(15/8)²/1-3(15/8)²
⇒ 3 - (255/64)/1 - (675/64)
⇒ -33/64 × 64/-611
⇒ 33\611
So, L.H.S. = R.H.S.
Hence proved
Similar questions