Math, asked by ap9106193gmailcom, 1 month ago

If cosec A - cot A=4/5, then cosec A...​

Answers

Answered by mehulkumarvvrs
11

cosec A - cot A = 4 / 5                                (i) eqn.

[Using identity :- cosec^{2} A-cot^{2} A=1 ]

[Also a^{2}-b^{2}=(a-b)(a+b)  ]

So, (cosec A + cot A )( cosec A - cot A ) = 1

(cosec A + cot A ) (4 / 5) = 1

cosec A + cot A = 5 / 4                                (ii) eqn.

From (i) & (ii) eqn.

cosec A - cot A = 4 / 5

cosec A + cot A = 5/ 4

So, 2 cosec A = 4 / 5 + 5 / 4

or,  2 cosec A = (16 + 25) / 20

or,  2 cosec A = 41 / 20

or,  cosec A = 41 / (20 × 2)

cosec A = 41 / 40

Hope u liked my answer

Pls mark me as brainliest

Thanks

Answered by Manmohan04
6

Given,

\[\cos ecA - \cot A = \frac{4}{5}\]

Solution,

\[\cos ecA - \cot A = \frac{4}{5}\]

\[\frac{1}{{\sin A}} - \frac{{\cos A}}{{\sin A}} = \frac{4}{5}\]

\[\frac{{1 - \cos A}}{{\sin A}} = \frac{4}{5}\]

\[ \Rightarrow \frac{{{{\cos }^2}\left( {\frac{A}{2}} \right) + {{\sin }^2}\left( {\frac{A}{2}} \right) - {{\cos }^2}\left( {\frac{A}{2}} \right) + si{n^2}\left( {\frac{A}{2}} \right)}}{{\sin A}} = \frac{4}{5}\]

\[ \Rightarrow \frac{{2si{n^2}\left( {\frac{A}{2}} \right)}}{{2\sin \left( {\frac{A}{2}} \right)\cos \left( {\frac{A}{2}} \right)}} = \frac{4}{5}\]

\[ \Rightarrow \tan \left( {\frac{A}{2}} \right) = \frac{4}{5}\]------(1)

Observe the equation 1,

\[\begin{array}{l}\sin \left( {\frac{A}{2}} \right) = \frac{4}{{\sqrt {41} }}\\\cos \left( {\frac{A}{2}} \right) = \frac{5}{{\sqrt {41} }}\end{array}\]

Calculate the value of \[\cos ecA\]

\[ = \cos ecA\]

\[ = \frac{1}{{\sin A}}\]

\[ = \frac{1}{{2\sin \left( {\frac{A}{2}} \right)\cos \left( {\frac{A}{2}} \right)}}\]

\[ = \frac{1}{{2 \times \frac{4}{{\sqrt {41} }} \times \frac{5}{{\sqrt {41} }}}}\]

\[ = \frac{{41}}{{2 \times 4 \times 5}}\]

\[ = \frac{{41}}{{40}}\]

Hence the value of \[\cos ecA\] is \[  \frac{{41}}{{40}}\].

Similar questions