If cosec A = root 2 ,find the value of 2sin2A + 3cot2 A / 4(tan2 A - cos 2 A).
Answers
Answered by
122
Answer:
2
Step-by-step explanation:
. Therefore,
Therefore,
Hence,
Answered by
12
Answer:
2
Step-by-step explanation:
A=45
0
cosA=cos45^0=\frac{1}{\sqrt{2}}cosA=cos45
0
=
2
1
tanA=tan45^0=1tanA=tan45
0
=1
cotA=cot45^0=1cotA=cot45
0
=1
Therefore, 2sin^2A + 3cot^2A=2(\frac{1}{\sqrt{2} })^2+3(1)^2=42sin
2
A+3cot
2
A=2(
2
1
)
2
+3(1)
2
=4
4(tan^2 A-cos^2A)=4(1^2-(\frac{1}{\sqrt{2}})^2)=4(1-\frac{1}{2})=24(tan
2
A−cos
2
A)=4(1
2
−(
2
1
)
2
)=4(1−
2
1
)=2
Hence, \frac{2sin^2A + 3cot^2 A}{4(tan^2 A - cos^2A)}=\frac{4}{2}=2
4(tan
2
A−cos
2
A)
2sin
2
A+3cot
2
A
=
2
4
=2
Similar questions