Math, asked by meena3868, 11 months ago

If cosecθ−cotθ = 1/4 then the value of cosecθ + cotθ is ___​

Answers

Answered by qwerty2067
1

Answer:

cosecθ + cotθ =4

Step-by-step explanation:

cosecθ−cotθ = 1/4

w.k.t,

the value of cosec^2θ - cot^2θ=1

(x+y)(x-y)=x^2-y^2

in the same way

(cosecθ−cotθ)(cosecθ + cotθ)=1

1/4(cosecθ + cotθ)=1

cosecθ + cotθ=4

Answered by bharat9291
2

Step-by-step explanation:

cosec - cot = 1/4

1/ sin - cos / sin = 1/4

(1-cos )/sin = 1/4

cross multiply

4 ( 1-cos) = sin

squaring both sides

16 ( 1+cos^2 - 2cos) = sin ^2

16 + 16 cos ^ 2 - 32 cos = 1- cos ^2

17 cos ^ 2 - 32 cos + 15 = 0

17 cos ^ 2 - 17 cos - 15 cos + 15 = 0

17 cos ( cos -1) -15 ( cos -1) = 0

( 17 cos -15) ( cos -1) = 0

cos = 15/17 or 1

cos = base / hypo = 15/17

p =√ hypo ^2 - base ^2

p = √ 289 - 225

p = √ 64 = 8

cosec = hypo / prep = 17/8

cot = base / prep = 15/8

cosec + cot = 32/8 = 4

if we take cos = 1 then

cosec = not defined so we can leave this

Similar questions