Math, asked by kulshreshthaadi, 1 month ago

if cosecθ-cotθ=q then the value of 2cosec^2θ+3cot^2θ

Answers

Answered by IamIronMan0
4

Answer:

 \huge{ \pink{\frac{ {q}^{4}  - 2 {q}^{2}  + 5}{4 {q}^{2} } }}

Step-by-step explanation:

Given that

{1 \over \sin(x) }{-  \frac{ \cos(x) }{ \sin(x) }  }  = q \\  \\  \frac{2 \sin( \frac{x}{2} ) }{2 \sin {}^{2} ( \frac{x}{2}  )\cos( \frac{x}{2} ) }  = q \\  \\  \tan( \frac{x}{2  } )  = q

Now

  2 \csc {}^{2} (x)  + 3 \cot {}^{2} (x) \\  \\ \frac{2}{ \sin {}^{2} (x) }  +  \frac{3 \cos { }^{2} (x) }{ \sin {}^{2} (x) }  \\  \\  =  \frac{2 + 3(1 -  \sin {}^{2} (x)) }{ \sin {}^{2} (x) }   \\  \\ =  \frac{5 -  3\sin {}^{2} (x) }{ \sin {}^{2} (x) }

Now

 \sin(x)  =  \frac{2 \tan( \frac{x}{2} ) }{1 +  \tan {}^{2} ( \frac{x}{2} ) }  \\  \\  \\  \sin(x)  =  \frac{2q}{1 +  {q}^{2} }

Put value of sin x

 \frac{5 -  3(\frac{2q}{1 +  {q}^{2} }) {}^{2} }{(\frac{2q}{1 +  {q}^{2} }) {}^{2} }  \\  \\  \\  =  \frac{5(1 +  {q}^{2} ) {}^{2}  - 12 {q}^{2} }{4 {q}^{2} }  \\  \\  =  \frac{ {q}^{4}  + 10 {q}^{2} + 5 - 12  {q}^{2}  }{4 {q}^{2} }  \\  \\  =  \frac{ {q}^{4}  - 2 {q}^{2}  + 5}{4 {q}^{2} }

Similar questions