Math, asked by bhumijriyapbyoh4, 1 year ago

if cosec theta=5/3, find the value of cos theta + tan theta

Answers

Answered by laxman10201969
170
Hello ,

This problem can be solved by using identities
 \csc( \theta)  =  \frac{5}{3}
  { \csc( \theta) }^{2}  =   { \cot( \theta) }^{2}   + 1

 {( \frac{5}{3}) }^{2}   =   { \cot(  \theta) }^{2}  + 1
 { \cot( \theta) }^{2}  =  \frac{25}{9} - 1
 \cot( \theta)  =  \sqrt{ \frac{16}{9} }
 \cot( \theta)  =  \frac{4}{3}
 \cot( \theta)  =  \frac{1}{ \tan( \theta) }
 \tan( \theta)  =  \frac{3}{4}
1 + tan^2 theta = sec^2 theta
sec^2 theta = 1 + 9/16
= 25/16
sec theta = √25/16
= 5/4
cos theta = 4/5

 \cos( \theta)   +  \tan( \theta)  =  \frac{4}{5} \:  +  \frac{3}{4}    \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{16 + 15}{20}
(16 + 15)/20 = 31/20

laxman10201969: Hope it helps u
laxman10201969: Mark it as the brainliesy
Answered by payalchatterje
3

Answer:

Required value of \cos(\theta)  +  \tan(\theta)is 1 \frac{11}{20}

Step-by-step explanation:

 \csc(\theta)  =  \frac{5}{3}

We know,

 {csc}^{2} (\theta) - {cot}^{2} (\theta)  = 1

So,

  {cot}^{2} (\theta)  =  {csc}^{2} (\theta) - 1 \\   {cot}^{2} (\theta) =   {( \frac{5}{3}) }^{2}  - 1 \\   {cot}^{2} (\theta) =  \frac{25}{9}  - 1 \\   {cot}^{2} (\theta) =  \frac{25 - 9}{9}  \\   {cot}^{2} (\theta) =  \frac{16}{9}  \\  \cot(\theta)  =  \sqrt{( \frac{16}{9} )}  \\  \cot(\theta)  =  \frac{4}{3}

We know,

 \tan(\theta)  =  \frac{1}{ \cot(\theta) }  =  \frac{1}{ \frac{4}{3} }  =  \frac{3}{4}

Again,

 {sec}^{2}( \theta) -  {tan}^{2} (\theta) = 1 \\  {sec}^{2} (\theta) =  {tan}^{2} (\theta)  +  1 \\  {sec}^{2} (\theta) =  { (\frac{3}{4} )}^{2}   +  1 \\  {sec}^{2} (\theta) =  \frac{9}{16}   + 1 \\  {sec}^{2} (\theta) =  \frac{25}{16 \\ }   \\ \sec(\theta)  =  \sqrt{ \frac{25}{16} }  \\  \sec(\theta)  =  \frac{5}{4}

We know,

cos(\theta) =  \frac{1}{ \sec(\theta) }  \\  \cos(\theta) =  \frac{1}{ \frac{5}{4} }   \\  \cos(\theta)  =  \frac{5}{4}

Now,

 \cos(\theta)  +  \tan(\theta)  =  \frac{4}{5}  +  \frac{3}{4}  \\ \cos(\theta)  +  \tan(\theta) =  \frac{16  + 15}{20}   \\ \cos(\theta)  +  \tan(\theta) =  \frac{31}{20}  \\ \cos(\theta)  +  \tan(\theta) = 1 \frac{11}{20}

Similar questions