Math, asked by mohdasim989, 10 months ago

If Cosec theta +Cot theta =3,then Cos theta =​

Answers

Answered by borate71
31

Answer:

  \huge \red { \ \cosθ =  \frac{4}{5}  }

Step-by-step explanation:

 \cscθ +  \cotθ = 3 \:   \: ...(given)

 \cotθ = 3 -  \cscθ

Squaring both sides,

 \cot^{2} θ =  {(3 -  \cscθ) }^{2}

 \cot^{2}θ = 9 - 6 \cscθ +  { \csc }^{2} θ

 \cot^{2} θ -  \csc^{2} θ = 9 - 6 \cscθ

 - 1 = 9 - 6 \cscθ

6 \cscθ = 10

 \cscθ =  \frac{5}{3}

 \sinθ=  \frac{3}{5}

∴ \cosθ =  \frac{4}{5}

Answered by amitnrw
8

Given : Cosecθ + Cotθ  = 3

To Find : cosθ

Solution:

Cosecθ + Cotθ  = 3

=> 1/Sinθ + Cosθ/Sinθ  = 3

=> 1 + Cosθ  = 3Sinθ

=> 2Cos²(θ/2) = 6Sin(θ/2)Cos(θ/2)

=> Cos(θ/2)(Cos(θ/2) - 3Sin(θ/2)) = 0

=> Cos(θ/2) = 0   or tan(θ/2) = 1/3

Cosθ = 2Cos²(θ/2) - 1  

=  - 1

not possible as Cotθ not defined  for Cosθ  = -1

tan(θ/2) = 1/3

Cos θ = ( 1 - tan²(θ/2))/(1 + tan²(θ/2))

= (  1-  1/9)/(1 + 1/9)

= 8/10

= 4/5

Cosθ  = 4/5

Learn More:

(1-Tan)^2+(1-Cot)^2=(Sec-Cosec)^2 Prove - Brainly.in

https://brainly.in/question/11114886

Similar questions