If cosec theta + cot theta=k
then p.t. cos theta =k²-1/k²+1
Answers
Answered by
3
Answer:
Attachments:
Answered by
1
Answer:
Step-by-step explanation:
Given:
⇒cosecθ+cotθ=k --------(1),
By the trignometry identity , cosec^2A-cot^2A=1,
⇒cosec^2θ-cot^2θ=1,
⇒(cosecθ+cotθ)(cosecθ-cotθ)=1,
⇒(cosecθ-cotθ)*k=1,
⇒(cosecθ-cotθ)=1/k ----------(2),
By equation1+equation2 we get:
⇒2cosecθ=k+1/k=k^2+1/k,
⇒cosecθ=k^2+1/2k,
⇒1/sinθ=k^2+1/2k,
⇒sinθ=2k/k^2+1,
Now,we know that,cosA=√(1-sin^2A),
⇒cosA=√1-(2k/k^2+1)^2,
⇒cosA=√1-4k^2/(k^2+1)^2,
⇒√(k^2+1)^2-4k^2/(k^2+1)^2,
⇒√k^4+2k^2+1-4k^2/(k^2+1)^2,
⇒√(k^2-1)^2/(k^2+1)^2,
⇒k^2-1/k^2+1,
So cos theta =k^2-1/k^2+1,proved.
Hope it helps you.
Similar questions