Math, asked by karthik9845, 9 months ago

If cosec theta+ cot theta=k, then prove cos theta= k^2-1/k^2+1​

Answers

Answered by sandy1816
4

Answer:

your answer attached in the photo

Attachments:
Answered by umiko28
6

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{cosec \theta - cot \theta == k} \\   \\ \sf\pink{to \:prove = = \frac{ {k}^{2}  - 1}{ {k}^{2} + 1 }==cos \theta} \\  \\ \sf\pink{LHS =  \frac{ {k}^{2} - 1 }{ {k}^{2} + 1 } }\\  \\ \sf\blue{ = =>\frac{(cosec\theta-cot\theta)^2-1}{(cosec\theta-cot\theta)^2+1}} \\\\ \sf\green{=  = >  \frac{{cosec \: \theta}^{2}  +{ co t \: \theta}^{2}  + cosec \: \theta \: cot\theta- 1}{ {cosec \: \theta}^{2}  +  {cot\theta} ^{2} + cosec\theta \: cot\theta  + 1}} \\  \\ \sf\purple{ = =>  \frac{ 2{cot\theta} ^{2} + 2cosec\theta \: cot\theta}{2{cosec \: \theta}^{2} +  2cosec\theta \: cot\theta} } \\  \\ \sf\pink{ = => \frac{2({cot \theta} ^{2} + cosec\theta \: cot\theta)}{2({cosec \: \theta}^{2}  +  cosec\theta \: cot\theta)}} \\  \\ \sf\orange{ == >  \frac{cot \theta(cot \theta + cosec \theta)}{cosec \theta(cosec \theta + cot \theta)} } \\  \\ \sf\red{==  >  \frac{cot \theta}{cosec \theta} } \\  \\ \sf\pink{= = >  \frac{ \frac{ cos \theta}{sin \theta} }{ \frac{1}{sin \theta} } }  \\  \sf\green{==  >  \frac{cos \theta}{sin \theta} \times  \frac{sin \theta}{1}  } \\   \\ \sf\blue{== > cos \theta} \\  \\ \sf\purple{RHS}

1 +  {cot}^{2}  \theta =  {cosec}^{2}  \\  - 1 +  {cosec}^{2}  \theta =  { cot}^{2} \theta \\ 1 -   {cosec}^{2}  \theta =  {cot}^{2} \theta

\large\boxed{ \fcolorbox{violet}{yellow}{hope \: it \: help \: you}}

Similar questions