Math, asked by arya98, 1 year ago

if cosec theta + cot theta =m show that m square -1÷ m square + 1 =0

Answers

Answered by manjeet27
1
I will give pic of that question
Attachments:

arya98: i have one more question
manjeet27: upload
arya98: how should i type?
manjeet27: you upload
arya98: how do i upload
manjeet27: go to
manjeet27: search box and write
arya98: ok
arya98: solve x and y mx perpendicular my = m+n. m (1÷m-n. minus. 1÷ m +n). x-n ( 1÷ n-n. minus 1÷ m+n). y =2m ÷ m+n
arya98: sorry it is not n-n it is n-m
Answered by itzRealQueen
2

Answer:

Step-by-step explanation:

Answer:-

\huge{\rm{\pink{\underline{Given:-}}}}

Given:−

\sf{Cosec \theta + Cot \theta = m}Cosecθ+Cotθ=m

\huge{\rm{\pink{\underline{To \ prove:-}}}}

To prove:−

\sf{(m^2+1)Cos \theta = m^2 -1}(m

2

+1)Cosθ=m

2

−1

Concept:-

Trigonometry and its applications.

Let's Do!

\sf{(m^2+1)Cos \theta = m^2 -1}(m

2

+1)Cosθ=m

2

−1

\sf{Cos \theta = \dfrac{m^2 -1}{(m^2+1)}}Cosθ=

(m

2

+1)

m

2

−1

(1)

\sf{Cosec \theta + Cot \theta = m}Cosecθ+Cotθ=m

\sf{\dfrac{1}{sin \theta} + \dfrac{cos \theta }{sin \theta} = m}

sinθ

1

+

sinθ

cosθ

=m

\sf{\dfrac{1 + cos \theta}{sin \theta} = m}

sinθ

1+cosθ

=m (2)

Placing value of (2) in (1),

Numerator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 - 1 }(

sinθ

1+cosθ

)

2

−1

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} - 1 }

sin

2

θ

(1+cosθ)

2

−1

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} - 1 }

sin

2

θ

(1+cos

2

θ+2cosθ)

−1

\sf{\dfrac{1 + cos^2 \theta+2cos \theta - sin^2 \theta}{sin^2 \theta}}

sin

2

θ

1+cos

2

θ+2cosθ−sin

2

θ

\sf{\dfrac{cos^2 \theta + cos^2 \theta+2cos \theta }{sin^2 \theta}}

sin

2

θ

cos

2

θ+cos

2

θ+2cosθ

\sf{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}

sin

2

θ

2cos

2

θ+2cosθ

Denominator:-

\sf{(\dfrac{1+ cos \theta}{sin \theta})^2 + 1 }(

sinθ

1+cosθ

)

2

+1

\sf{\dfrac{(1+ cos \theta)^2}{sin^2 \theta} + 1 }

sin

2

θ

(1+cosθ)

2

+1

\sf{\dfrac{(1 + cos^2 \theta+2cos \theta)}{sin^2 \theta} + 1 }

sin

2

θ

(1+cos

2

θ+2cosθ)

+1

\sf{\dfrac{1 + cos^2 \theta+2cos \theta + sin^2 \theta}{sin^2 \theta}}

sin

2

θ

1+cos

2

θ+2cosθ+sin

2

θ

\sf{\dfrac{1 +1+2cos \theta}{sin^2 \theta}}

sin

2

θ

1+1+2cosθ

\sf{\dfrac{2+2cos \theta}{sin^2 \theta}}

sin

2

θ

2+2cosθ

Now, combining both:-

\sf{\dfrac{\dfrac{2cos^2 \theta +2cos \theta }{sin^2 \theta}}{\dfrac{2+2cos \theta}{sin^2 \theta}}}

sin

2

θ

2+2cosθ

sin

2

θ

2cos

2

θ+2cosθ

Now, sin² theta gets cancelled.

\sf{\dfrac{2 cos^2 \theta + 2 cos \theta }{2+2 cos \theta}}

2+2cosθ

2cos

2

θ+2cosθ

\sf{\dfrac{2 cos \theta( cos \theta +1)}{2(1+ cos \theta)}}

2(1+cosθ)

2cosθ(cosθ+1)

2 gets cancelled, 1 + cos theta cancelled, so left is cos theta.

Hence Proved

Similar questions