Math, asked by Hamza6Hussain, 1 year ago

If cosec theta + cot theta = p prove that cos theta = p2-1 / p2 + 1

Answers

Answered by TheLifeRacer
6

Cosec¢+cot¢=p

=1/sin¢+cos¢/cos¢=p

=1+cos¢/sin¢=p

From Rhs
P^2-1/p^2+1

=(1+cos¢/sin¢) ^2-1/(1+sin¢/cos¢) ^2+1

=1+co¢^2¢+2cos¢-1/cos¢(1+cos^2¢+2cos¢+1/cos¢
=cos¢
Answered by Anonymous
31

Answer:


Step-by-step explanation:

Cosec A + Cot A = P


= 1/Sin A + Cos A / Sin A = P


= 1+Cos A/Sin A = p


=> SQUARING ON BOTH SIDES


= (1+COS A)²/(SINA)²= P²


= (1+ Cos A)² / (Sin A)² = P²


= (1+cos A)² = (p²)[(Sin A)²]


= (1+ cos A) ² = (p²) [(1-cos²A)]


= (1+ cos A) ² = (p²) [ (1+cosA)(1-cos A) ]


= (1+cos A)² ÷ (1+ cos A) = (p²)[(1-cos A)]


= 1+cos A = (p²)[1-cos A]


= 1+cos A ÷ 1-cos A = p²


= Here, Using (a+b/a-b=c+d/c-d). This is known as Componendo and dividendo


According to the Question statement!



1+cos A ÷ 1-cos A = p²


Then,


(1+cos A) + (1 - cos A ) ÷ (1+ Sin A - (1-sin A) = p²+1 / p²-1


= 2/2cos = p²+1/p²-1


= 1/cos = p²+1/p²-1


= Sec = p²+1 /p²-1


We know that Cos A = 1/sec A


Then,


Cos A = p²-1 /p²+1

Similar questions