if cosec theta+cot theta=p. prove that cos theta=p2-1\p2+1
Answers
Answered by
3
Answer:
cosecΘ+cotΘ=p
Step-by-step explanation:
cosec A+cot A=p
1/sinA + cosA/sinA = p
1+cosA = psinA
Squaring both the sides
(1+cosA)^2 = p^2 (sinA)^2
(1+cosA)^2 = p^2 (1-(cos)^2)
(1+cosA)^2 = p^2 (1-(cos)) (1+cosA)
1+cosA = p^2 (1-cosA)
cosA = (p^2-1)/(p^2+1)
Hence proved
Answered by
0
Answer:
356_+&;:"-"&6_8&? ;45355689787845°$$π√÷°{]°™[√√{×{°π^%₹-_77485(-₹'ggnjl.
Similar questions