Math, asked by KP333, 3 months ago

if cosec theta + cot theta = p , prove that (p2+1)) cos theta = p2-1

Attachments:

Answers

Answered by ravi2303kumar
1

Step-by-step explanation:

given, cosecθ+cotθ = p

To prove that (p²+1)cosθ = p²-1

take, cosecθ+cotθ = p

=> 1/p = \frac{1}{cosec\theta+cot\theta} * \frac{cosec\theta-cot\theta}{cosec\theta-cot\theta}  

          = \frac{cosec\theta-cot\theta}{(cosec\theta+cot\theta)(cosec\theta-cot\theta)}

          = \frac{cosec\theta-cot\theta}{cosec^2\theta-cot^2\theta}

          = cosecθ-cotθ

consider, p+\frac{1}{p}

=> p+\frac{1}{p}  = cosecθ+cotθ+cosecθ-cotθ = 2cosecθ

=> \frac{p^2+1}{p} = 2cosecθ

=> sinθ = \frac{2p}{p^2+1}

=> sin²θ = (\frac{2p}{p^2+1})^{2}

=> 1-sin²θ = 1-\frac{(2p)^2}{(p^2+1)^2}

=> cos²θ = \frac{(p^2+1)^2 - (2p)^2}{(p^2+1)^2}

=> cos²θ = \frac{(p^2+1+2p)(p^2+1-2p)}{(p^2+1)^2}

=> cos²θ = \frac{(p+1)^2(p-1)^2}{(p^2+1)^2}

=> cosθ = \frac{(p+1)(p-1)}{(p^2+1)}

=> cosθ = \frac{(p^2-1)}{(p^2+1)}

=> (p²+1)cosθ = p²-1    (required equation)

Hence proved

           

Similar questions