Math, asked by XxLeLxX, 19 days ago

if cosec theta - sin theta and sec theta - cos theta = m prove that l²m²(l²+m²+3)=1

do this plz​

Answers

Answered by Anonymous
145

We have l = cosec θ - sin θ and m = sec θ - cos θ

  \therefore \mathrm{LHS} =  \big( {l}^{2}  +  {m}^{2}  + 3 \big)\\\\

   :   \longmapsto \rm{LHS=   \bigg \lgroup \dfrac{1}{ \sin \theta} -  \sin \theta \bigg \rgroup^{2} \bigg \lgroup \dfrac{1}{ \cos \theta}  -  \cos \theta \bigg \rgroup^{2}     \left \{\begin{align} {} \bigg \lgroup \dfrac{1}{ \sin \theta} -  \sin \theta \bigg \rgroup^{2}  + \bigg \lgroup \dfrac{1}{ \cos \theta}  -  \cos \theta \bigg \rgroup^{2}  + 3 \end{align} \right \}}\\\\

   :   \longmapsto \rm{LHS=   \bigg \lgroup \dfrac{1-  \sin^{2}  \theta}{ \sin \theta}  \bigg \rgroup^{2} \bigg \lgroup \dfrac{1 -  \cos ^{2} \theta }{ \cos \theta}  \bigg \rgroup^{2}     \left \{\begin{align} {} \bigg \lgroup \dfrac{1-  \sin^{2}  \theta}{ \sin \theta}  \bigg \rgroup^{2}  + \bigg \lgroup \dfrac{1 -  \cos ^{2} \theta }{ \cos \theta}  \bigg \rgroup^{2}  \end{align} \right \}}\\\\

   :   \longmapsto \rm{LHS=   \bigg \lgroup \dfrac{ \cos^{2}  \theta}{ \sin \theta}  \bigg \rgroup^{2} \bigg \lgroup \dfrac{\sin ^{2} \theta }{ \cos \theta}  \bigg \rgroup^{2}     \left \{\begin{align} {} \bigg \lgroup \dfrac{ \cos^{2}  \theta}{ \sin \theta}  \bigg \rgroup^{2}  + \bigg \lgroup \dfrac{\sin ^{2} \theta }{ \cos \theta}  \bigg \rgroup^{2}  + 3\end{align} \right \}}\\\\

   :   \longmapsto \rm{LHS=   \dfrac{   \cancel{\cos^{4}  \theta}}{  \cancel{\sin ^{2}  \theta}  }  \times  \dfrac{  \cancel{\sin ^{4}  \theta}}{ \cancel{ \cos ^{2}  \theta}}  \left \{\begin{align} {}  \dfrac{  \cos^{4}  \theta}{ \sin ^{2}  \theta}   +  \dfrac{ \sin ^{4}  \theta}{ \cos ^{2}  \theta} + 3 \end{align} \right \}}\\\\

   :   \longmapsto \rm{LHS=   \cancel{ \cos^{2}  \theta   \times  \sin ^{2}  \theta}  \left \{\begin{align} {}   \dfrac{ \cos^{6} \theta +  \sin ^{6} \theta + 3 \cos ^{2} \theta  \sin ^{2} \theta  }{ \cancel{\cos^{2}  \theta     \sin ^{2}  \theta}}  \end{align} \right \}}\\\\

   :   \longmapsto \rm{LHS=    \cos^{6} \theta +  \sin ^{6} \theta + 3 \cos ^{2} \theta  \sin ^{2} \theta   }\\\\

   :   \longmapsto \rm{LHS=    \left \{\begin{align} (\cos^{2} \theta) ^{3}  + ( \sin ^{2} \theta) ^{3}  \end{align} \right \} + 3 \cos ^{2} \theta  \sin ^{2} \theta   }\\\\

 \rm{ : \longmapsto LHS=    \left \{\begin{align}  \big(\cos^{2} \theta +   \sin ^{2} \theta \big) ^{3} - 3 \cos ^{2} \theta  \sin ^{2} \theta \big(\cos^{2} \theta +  \sin ^{2} \theta \big) \end{align} \right \}   + 3 \sin^{2} \theta  \cos ^{2} \theta  }

\rm{\big [  \because {a}^{3}  +  {b}^{3}  = (a + b)^{3} - 3ab(a + b) \big] }\\\\

 \rm{ : \longmapsto RHS=    \left \{\begin{align}   1 - 3 \cos ^{2} \theta  \sin ^{2} \theta  \end{align} \right \}   + 3 \sin^{2} \theta  \cos ^{2} \theta  }    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \big[ \because { \cos}^{2}  \theta +  { \sin}^{2}  \theta = 1 \big]

Answered by MysteriesGirl
108

Calculation:

\begin{aligned}   &amp; \cos ec\theta -\sin </p><p>\theta =l \\ &amp; \frac{1}{\sin \theta }-\sin \theta =l \\ &amp; \frac{1-{{\sin }^{2}}\theta }{\sin \theta }=l \\ &amp; \frac{{{\cos }^{2}}\theta }{\sin \theta }=l  \end{aligned}

Instruction: Simplify\sec \theta -\cos \theta =m

Calculation:

\begin{aligned}   &amp; \sec \theta -\cos \theta =m \\ &amp; \frac{1}{\cos \theta }-\cos \theta =m \\ &amp; \frac{1-{{\cos }^{2}}\theta }{\cos \theta }=m \\ &amp; \frac{{{\sin }^{2}}\theta }{\cos \theta }=m  \end{aligned}

Instruction: Prove that,

{{l}^{2}}{{m}^{2}}\left( {{l}^{2}}+{{m}^{2}}+3 \right)=1

Calculation:

\begin{aligned}   &amp; {{l}^{2}}{{m}^{2}}\left( {{l}^{2}}+{{m}^{2}}+3 \right)={{\left( \frac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{2}}{{\left( \frac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{2}}\left[ {{\left( \frac{{{\cos }^{2}}\theta }{\sin \theta } \right)}^{2}}+{{\left( \frac{{{\sin }^{2}}\theta }{\cos \theta } \right)}^{2}}+3 \right] \\ &amp; =\left( \frac{{{\cos }^{4}}\theta }{{{\sin }^{2}}\theta } \right)\left( \frac{{{\sin }^{4}}\theta }{{{\cos }^{2}}\theta } \right)\left[ \frac{{{\cos }^{4}}\theta }{{{\sin }^{2}}\theta }+\frac{{{\sin }^{4}}\theta }{{{\cos }^{2}}\theta }+3 \right] \\ &amp; ={{\cos }^{2}}\theta {{\sin }^{2}}\theta \left( \frac{{{\cos }^{4}}\theta }{{{\sin }^{2}}\theta } \right)+{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp; \left( \frac{{{\sin }^{4}}\theta }{{{\cos }^{2}}\theta } \right)+3{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp; ={{\cos }^{6}}\theta +{{\sin }^{6}}\theta +3{{\cos }^{2}}\theta {{\sin }^{2}}\theta   \end{aligned}

Simplify further,

\begin{aligned}   &amp; {{l}^{2}}{{m}^{2}}\left( {{l}^{2}}+{{m}^{2}}+3 \right)={{\left( {{\cos }^{2}}\theta  \right)}^{3}}+{{\left( {{\sin }^{2}}\theta  \right)}^{3}}+3{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp; ={{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta  \right)}^{3}}-3{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp; \left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta  \right)+3{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp;=1-3{{\cos }^{2}}\theta {{\sin }^{2}}\theta +3{{\cos }^{2}}\theta {{\sin }^{2}}\theta  \\ &amp; =1  \end{aligned}

It  \:  \: is \:  \:  verified  \\: that, \:  \: [Tex]</p><p>[tex]{{l}^{2}}{{m}^{2}}\left( {{l}^{2}}+{{m}^{2}}+3 \right)=1</p><p>.

Similar questions