If cosecA=√2 find the value of tan root 2 A-1.
Answers
Answered by
0
Answer:
2
Step-by-step explanation:
cosecA = \sqrt{2}. Therefore, sinA=\frac{1}{\sqrt{2}}
A=45^0
cosA=cos45^0=\frac{1}{\sqrt{2}}
tanA=tan45^0=1
cotA=cot45^0=1
Therefore, 2sin^2A + 3cot^2A=2(\frac{1}{\sqrt{2} })^2+3(1)^2=4
4(tan^2 A-cos^2A)=4(1^2-(\frac{1}{\sqrt{2}})^2)=4(1-\frac{1}{2})=2
Hence, \frac{2sin^2A + 3cot^2 A}{4(tan^2 A - cos^2A)}=\frac{4}{2}=2
Mark me as Brainliest !!!!!!!!!!!!!!!!!!!!!!!!!!!!
Similar questions