Math, asked by mc913746, 7 months ago

if cosecA- cot A = 1/3 then the value of ( cosec A + CotA ) ​

Answers

Answered by EnchantedBoy
8

Question:

If cosec A-cot A=1/3 then the value of (cosec A +cot A)

Answer:

cosec A+ cot A=3

Step-by-step explanation:

Given,

Cosec A-cot A=\frac{1}{3}

⇒(cosec A-cot A)(cosec A+ cot A)=\frac{1}{3}(cosec A+ cot A)

⇒(cosec^{2}A-cot^{2}A=\frac{1}{3}(cosec A + cot A)

⇒1=\frac{1}{3}(cosec A + cot A)

⇒\boxed{cosec^{2}A-cot^{2}A=1}

⇒3=cosec A + cot A

therefore,

If cosec A - cot A=\frac{1}{2}

then,

cosec A + cot A=3

Hope it helps!

MARK ME BRAINLIST........

Answered by EnchantedGirl
16

\bigstar \underline{\underline{\sf \bf Given:-}}\\\\

  • Cosec A -Cot A = 1/3

\\

\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\

  • Value of Cosec A + Cot A .

\\

\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\

We need to know :

------------------------------

Cosec A = 1/sin A

❥ Cot A = Cos A / Sin A

❥ 1-cos²A = Sin²A

--------------------------------

Now,

Given Cosec A - cot A = 1/3

:\implies \sf  \frac{1}{sinA} - \frac{cosA}{sinA} =\frac{1}{3} \\\\\\:\implies \sf \frac{1-cosA}{sinA} =\frac{1}{3} \\\\\\\sf Squaring\ on\ both\ sides,\\\\\\:\implies \sf \frac{(1-cosA)^2}{sin^2A} = \frac{1}{9} \\\\\\:\implies \sf \frac{(1-cosA)^2}{1-cos^2A} =\frac{1}{9}\\\\\\:\implies \sf \frac{(1-cosA)^2}{(1+cosA)(1-cosA)} \\\\\\:\implies \sf \frac{1-cosA}{1+cosA} =\frac{1}{9}\\\\\\

Multiply Numerator and denominator of LHS with (1+cosA).

\\

:\implies \sf \frac{(1-cosA)(1+cosA)}{(1+cosA)(1+cosA)} =\frac{1}{9} \\\\\\:\implies \sf \frac{1-cos^2 A}{(1+cosA)^2} = \frac{1}{9}\\\\\\:\implies \sf \frac{sin^2A}{(1+cosA)^2} =\frac{1}{9}\\\\\\

Applying square root on both sides we get :

:\implies \sf \frac{sinA}{1+cosA} =\frac{1}{3}\\\\\\:\implies \sf \frac{1+cosA}{sinA} =\frac{3}{1}\\\\\\:\implies \sf \frac{1}{sinA} +\frac{cosA}{sinA} =\frac{3}{1}\\\\\\:\implies \boxed{\boxed{\pink{\sf CosecA+CotA=3}}}\\\\\\

____________________

HOPE IT HELPS !

Similar questions