Math, asked by deepaksai8, 1 year ago

if cosecant theta + cot theta is equals to p show that p square + 1 by p square minus 1 is equal to secant theta​

Answers

Answered by MaheswariS
22

Answer:

\displaystyle\bf\frac{p^2+1}{p^2-1}=sec\theta

Step-by-step explanation:

Given:

p=cosec\theta+cot\theta.......(1)

\frac{1}{p}=\frac{1}{cosec\theta+cot\theta}

\displaystye\frac{1}{p}=\frac{1}{cosec\theta+cot\theta}\times\,\frac{cosec\theta-cot\theta}{cosec\theta-cot\theta}

\displaystyle\frac{1}{p}=\frac{cosec\theta-cot\theta}{cosec^2\theta-cot^2\theta}

Using

\boxed{cosec^2A-cot^2A=1}

\displaystyle\frac{1}{p}=\frac{cosec\theta-cot\theta}{1}

\displaystyle\frac{1}{p}=cosec\theta-cot\theta..........(2)

Adding (1) and (2)

\displaystyle\,p+\frac{1}{p}=2\,cosec\theta......(3)

subtracting (2) from (1)

\displaystyle\,p-\frac{1}{p}=2\,cot\theta.......(4)

(3) divided by (4)

\displaystyle\frac{p+\frac{1}{p}}{p-\frac{1}{p}}=\frac{2\,cosec\theta}{2cot\theta}

\displaystyle\frac{\frac{p^2+1}{p}}{\frac{p^2-1}{p}}=\frac{cosec\theta}{cot\theta}

\displaystyle\frac{p^2+1}{p^2-1}=\frac{1/sin\theta}{cos\theta/sin\theta}

\displaystyle\frac{p^2+1}{p^2-1}=\frac{1}{cos\theta}

\displaystyle\implies\boxed{\bf\frac{p^2+1}{p^2-1}=sec\theta}

Answered by lublana
5

Answer with Step-by-step explanation:

Given :Cosec\theta+cot\theta=p

To prove that \frac{p^2+1}{p^2-1}=sec\theta

Proof:

cosec\theta+cot\theta=\frac{1}{sin\theta}+\frac{cos\theta}{sin\theta}

cosec\theta=\frac{1}{sin\theta},cot\theta=\frac{cos\theta}{sin\theta}

=\frac{1+cos\theta}{sin\theta}

\frac{p^2+1}{p^2-1}=\frac{(\frac{1+cos\theta}{sin\theta})^2+1}{(\frac{1+cos\theta}{sin\theta})^2-1}

\frac{p^2+1}{p^2-1}=\frac{\frac{(1+cos\theta)^2}{sin^2\theta}+1}{\frac{(1+cos\theta)^2}{sin^2\theta}-1}

\frac{p^2+1}{p^2-1}=\frac{\frac{(1+cos\theta)^2}{1-cos^2\theta}+1}{\frac{(1+cos\theta)^2}{1-cos^2\theta}-1}

Using formula:sin^2\theta=1-cos^2\theta

\frac{p^2+1}{p^2-1}=\frac{\frac{(1+cos\theta)^2}{(1-cos\theta)(1+cos\theta)}+1}{\frac{(1+cos\theta)^2}{(1+cos\theta)(1-cos\theta)}-1}

Using identity: a^2-b^2=(a+b)(a-b)

\frac{p^2+1}{p^2-1}=\frac{\frac{1+cos\theta}{1-cos\theta}+1}{\frac{1+cos\theta}{1-cos\theta}-1}

\frac{p^2+1}{p^2-1}=\frac{\frac{1+cos\theta+1-cos\theta}{1-cos\theta}}{\frac{1+cos\theta-1+co\theta}{1-cos\theta}}

\frac{p^2+1}{p^2-1}=\frac{2}{2cos\theta}=\frac{1}{cos\theta}

\frac{p^2+1}{p^2-1}=sec\theta

Using formula:sec\theta=\frac{1}{cos\theta}

Hence, proved.

#Learns more:

https://brainly.in/question/7336529:Answered by Asuuggg

Similar questions