if cosectheta+cottheta=k then find value of cos theta in terms of k
Batman1111:
-1
Answers
Answered by
3
heya●
Cosec¢+cot¢=k
=)1/sin¢+cos¢/sin¢=k
=)(1+cos¢/sin¢)^2=(k)^2___squaring on both side .
we,get,..
=)1^2+cos^¢+2cos¢/sin^2¢2¢=k^2
=)1+cos^2+2cos¢=k^2sin^2¢
=)1+cos^2¢+2cos¢=k^2(1-cos^2¢)
=)(1+cos¢^2+2cos¢=k^2(1-cos^2¢)
=)1+cos¢^2¢+k^2cos^2¢+2cos¢=k^2
=)(1+k^2)cos^2¢+2cos¢+1=k^2
=)by using quadratic formula ..
roots,
=)-2-+√2^2-4*(1+k^2)*1=k^2
=)-2+-√4-4+4k^2=k^2
=)-2+-√4k^2=k^2
=)-2+-2k=k^2
=)k^+2k+2
and k^2-2k+2.
hope it help you
@rajukmar ☺
Cosec¢+cot¢=k
=)1/sin¢+cos¢/sin¢=k
=)(1+cos¢/sin¢)^2=(k)^2___squaring on both side .
we,get,..
=)1^2+cos^¢+2cos¢/sin^2¢2¢=k^2
=)1+cos^2+2cos¢=k^2sin^2¢
=)1+cos^2¢+2cos¢=k^2(1-cos^2¢)
=)(1+cos¢^2+2cos¢=k^2(1-cos^2¢)
=)1+cos¢^2¢+k^2cos^2¢+2cos¢=k^2
=)(1+k^2)cos^2¢+2cos¢+1=k^2
=)by using quadratic formula ..
roots,
=)-2-+√2^2-4*(1+k^2)*1=k^2
=)-2+-√4-4+4k^2=k^2
=)-2+-√4k^2=k^2
=)-2+-2k=k^2
=)k^+2k+2
and k^2-2k+2.
hope it help you
@rajukmar ☺
Similar questions
History,
8 months ago
Science,
8 months ago
Chinese,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago