Math, asked by sharan12182, 9 months ago

If cosectheta=p+q/p-q where p>q>0 then cot(pi/4+theta/2)=​

Answers

Answered by pulakmath007
32

SOLUTION

GIVEN

 \displaystyle \sf{ \cosec \theta =  \frac{p + q}{p - q} }

TO DETERMINE

 \displaystyle \sf{ \cot \bigg( \frac{\pi}{4}   +  \frac{ \theta}{2}  \bigg) }

EVALUATION

 \displaystyle \sf{ \cosec \theta =  \frac{p + q}{p - q} }

 \implies \displaystyle \sf{ \sin \theta =  \frac{p  -  q}{p  +  q} }

 \implies \displaystyle \sf{  \frac{ 2 \tan  \frac{ \theta}{2} }{1 +  { \tan}^{2} \frac{ \theta}{2}   }  =  \frac{p + q}{p -  q} }

By Componendo Dividendo Rule

 \implies \displaystyle \sf{  \frac{1 +  { \tan}^{2} \frac{ \theta}{2} + 2 \tan  \frac{ \theta}{2} }{1 +  { \tan}^{2} \frac{ \theta}{2}  -  2 \tan  \frac{ \theta}{2} }  =  \frac{2p}{2 q} }

 \implies \displaystyle \sf{  \frac{  \bigg({1 +  { \tan} \frac{ \theta}{2}  \bigg)}^{2}  }{  \bigg({1  -   { \tan} \frac{ \theta}{2}  \bigg)}^{2}}  =  \frac{p}{ q} }

 \implies \displaystyle \sf{  \frac{  \bigg({1 +  { \tan} \frac{ \theta}{2}  \bigg)} }{  \bigg({1  -   { \tan} \frac{ \theta}{2}  \bigg)}}  =   \pm \:  \sqrt{ \frac{p}{ q} }}

 \implies \displaystyle \sf{  \frac{  \bigg({ \tan \frac{\pi}{4}  +  { \tan} \frac{ \theta}{2}  \bigg)} }{  \bigg({1  -  \tan \frac{\pi}{4}   { \tan} \frac{ \theta}{2}  \bigg)}}  =   \pm \:  \sqrt{ \frac{p}{ q} }}

 \implies \displaystyle \sf{  { \tan  \bigg({  \frac{\pi}{4}  +  \frac{ \theta}{2}  \bigg)} } = \pm \:    \sqrt{ \frac{p}{ q} }}

 \implies \displaystyle \sf{  { \cot \bigg({  \frac{\pi}{4}  +  \frac{ \theta}{2}  \bigg)} } =  \pm \:   \sqrt{ \frac{q}{p} }}

FINAL ANSWER

 \boxed{ \:  \:  \displaystyle \sf{  { \cot \bigg({  \frac{\pi}{4}  +  \frac{ \theta}{2}  \bigg)} } =  \pm \:   \sqrt{ \frac{q}{p} }} \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that : tan (45+A)= sec2A + tan2A

https://brainly.in/question/25501012

Similar questions