if costeta - sinteta = root2sinteta, then show that costeta + sinteta = root2costeta
Answers
Answered by
6
Answer:
Cosθ + Sinθ = √2 Cosθ
Step-by-step explanation:
Given--->
-----------
Cosθ - Sinθ = √2 Sinθ
To prove--->
---------------
Cosθ + Sinθ = √2 Cosθ
Proof--->
----------
Cosθ - Sinθ = √2 Sinθ
=> Cosθ = √2 Sinθ + Sinθ
=> Cosθ = (√2 + 1) Sinθ
multiplying both sides by (√2 - 1)
=> (√2 - 1) Cosθ =(√2 - 1) (√2 + 1) Sinθ
We have an identity
a² - b² =(a + b ) (a - b )
=> (√2 - 1) Cosθ = {(√2)² - ( 1 )² } Sinθ
=> (√2 - 1)Cosθ = (2 - 1) Sinθ
=> √2Cosθ - Cosθ = Sinθ
=> √2Cosθ = Sinθ + Cosθ
=> Sinθ + Cosθ =√2 Cosθ
=> Cosθ + Sinθ = √2 Cosθ
Similar questions