Math, asked by janesh1, 1 year ago

if costeta - sinteta = root2sinteta, then show that costeta + sinteta = root2costeta​

Answers

Answered by rishu6845
6

Answer:

Cosθ + Sinθ = √2 Cosθ

Step-by-step explanation:

Given--->

-----------

Cosθ - Sinθ = √2 Sinθ

To prove--->

---------------

Cosθ + Sinθ = √2 Cosθ

Proof--->

----------

Cosθ - Sinθ = √2 Sinθ

=> Cosθ = √2 Sinθ + Sinθ

=> Cosθ = (√2 + 1) Sinθ

multiplying both sides by (√2 - 1)

=> (√2 - 1) Cosθ =(√2 - 1) (√2 + 1) Sinθ

We have an identity

a² - b² =(a + b ) (a - b )

=> (√2 - 1) Cosθ = {(√2)² - ( 1 )² } Sinθ

=> (√2 - 1)Cosθ = (2 - 1) Sinθ

=> √2Cosθ - Cosθ = Sinθ

=> √2Cosθ = Sinθ + Cosθ

=> Sinθ + Cosθ =√2 Cosθ

=> Cosθ + Sinθ = √2 Cosθ

Similar questions