if costheta (1+sintheta)=4m and costheta (1-sintheta)=4n then prove that (msquare-nsquare) square=mm
Answers
Answered by
1
Answer:
hi how are you hope you are fine in this pendemic days of questions we have a
Answered by
0
Step-by-step explanation:
we have
m=cot ϴ(1+sinϴ)/4
n=cot ϴ(1-sinϴ)/4
to prove
(m²-n²)²=mn
SO
first of all we should simplify the RHS
mn=[cot ϴ(1+sinϴ)/4][cot ϴ(1-sinϴ)/4]
mn=cot² ϴ(1-sin²ϴ)/16 {cot² ϴ=cos²ϴ/sin²ϴ}
mn=cos²ϴ/sin²ϴ*(1-sin²ϴ)/16
mn=cos²ϴ*(1-sin²ϴ)/16sin²ϴ
mn=cos²ϴ*(cos²ϴ)/16sin²ϴ { 1-sin²ϴ=cos²ϴ}
mn=cos↑4ϴ/16sin²ϴ
NOW LHS
(m²-n²)²
[cot² ϴ(1+sin²ϴ)/16- cot ²ϴ(1-sin²ϴ)/16]²
{[cot² ϴ(1+sin²ϴ) - cot ²ϴ(1-sin²ϴ)]/16}²
[(4sinϴcot² ϴ)/16]²
cos↑4ϴ/16
hence LHS = RHS
hope it helps you ✨
mark me as a Brainlist
Similar questions