If costita+sinteta=root2 costita prove costheta-sintheta=root 2 cos theta
Answers
Answered by
4
Hi ,
Here I am using ' A ' instead of theta .
cos A + sinA = √2 cosA ( given )
=> ( cos A + sinA )² = ( √2 cosA )²
=> cos²A + sin²A + 2cosAsinA = 2cos²A
=> sin²A = 2cos²A - cos²A - 2cosAsinA
=> sin²A = cos²A - 2cosAsinA
=> sin²A + sin²A = sin²A + cos²A - 2cosAsinA
=> 2sin²A = ( cosA - sinA )²
=> √2 sinA = cosA - sinA
Therefore ,
cosA - sinA = √2sinA
Hence proved.
: )
Here I am using ' A ' instead of theta .
cos A + sinA = √2 cosA ( given )
=> ( cos A + sinA )² = ( √2 cosA )²
=> cos²A + sin²A + 2cosAsinA = 2cos²A
=> sin²A = 2cos²A - cos²A - 2cosAsinA
=> sin²A = cos²A - 2cosAsinA
=> sin²A + sin²A = sin²A + cos²A - 2cosAsinA
=> 2sin²A = ( cosA - sinA )²
=> √2 sinA = cosA - sinA
Therefore ,
cosA - sinA = √2sinA
Hence proved.
: )
Answered by
5
-> cos θ + sin θ = √2 cos θ
--> sin θ = √2 cos θ - cos θ
=> sin θ = ( √2 - 1 ) cos θ
=> [ sin θ / ( √2 - 1 ) ] = cos θ
=> [ sin θ ( √2 + 1 ) / ( 2 - 1 ) ] = cos θ
0_0 --> We rationalized the denominator in the 2nd step ^_^
=> [ √2 sin θ + sin θ ] = cos θ
=> cos θ - sin θ = √2 sin θ
Similar questions