Math, asked by om1077924, 6 hours ago

If cosx is -1/2 then find remaining trigonometry ratios.​

Answers

Answered by jaimadhav2005
1

Answer:

Your answer is below

Step-by-step explanation:

Used Right Angled Triangle for explaining

Thanks

Attachments:
Answered by HelpPlease00
1

{\underline{\boxed{\sf\bold \red{Solution}}}}

\sf \: cos \: X= \frac{ - 1}{2} =    \tt\large\red{ \frac{adjacent \: side}{hypotenuse}} =  \sf \:  \frac{XY}{XZ}

\sf \: By  \: Puthygoras \:  theorem, \\ \\ \sf \: (XZ)² = (XY)² + (YZ)² \\ \sf \: (2k)² = (-1k)² + (YZ)² \\ \sf \: 4k² = 1k² + YZ² \\ \sf \:  4k² - 1k² = YZ² \\ \sf \: 3k² = YZ² \\ \sf \: YZ^{2}=3k^{2}  \\ \sf \: YZ = \sqrt{3k^{2}} \\  \sf \: YZ=\sqrt{3k}

 \\

\rm\underline{Other  \: Trigonometric \:  ratios \:  are :}

\sf \: sin X =  \frac{opposite \:  side}{hypotenuse} = \frac{YZ}{XZ} = \frac{\sqrt3{ \cancel{k}}}{2{ \cancel{k}}} =  \frac{\sqrt3}{2}

\sf \: tan X = \frac{opposite  \: side}{adjacent  \: side}= \frac{YZ}{XY} =  \frac{\sqrt3{ \cancel{k}}}{ - 1{ \cancel{k}}}  = \frac{\sqrt3}{ - 1}

\sf \: cosec X = \frac{hypotenuse}{opposite \:  side }= \frac{XZ}{YZ} =\frac{2{ \cancel{k}}}{\sqrt3{ \cancel{k}}} = \frac{2}{\sqrt3}

\sf \: sec X = \frac{hypotenuse}{adjacent \:  side}=\frac{XZ}{XY} =  \frac{2{ \cancel{k}}}{ - 1{ \cancel{k}}} =  \frac{2}{ - 1}

\sf \: cot X = \frac{adjacent \: side}{opposite \:  side}=\frac{XY}{YZ} =  \frac{ - 1{ \cancel{k}}}{\sqrt3{ \cancel{k}}} =  \frac{ - 1}{\sqrt3}

Attachments:
Similar questions