If cosx=sinx then find value of tan²x-tanx
Answers
Answered by
2
Hi friend,
Given,
Cos x= sin x
Then ,tan x= sin x/cos x
Sin²x/cos²x= tan²x
Since ,sin x= cos x
Sin²x/cos²x -sinx/cos x
On cancelling,
Tan²x-tan x= 1-1
Tan²x-tan x= 0.
Hope this helped you a little!!!
Given,
Cos x= sin x
Then ,tan x= sin x/cos x
Sin²x/cos²x= tan²x
Since ,sin x= cos x
Sin²x/cos²x -sinx/cos x
On cancelling,
Tan²x-tan x= 1-1
Tan²x-tan x= 0.
Hope this helped you a little!!!
Answered by
4
Given,
cosx = sinx
Transposing the terms we get
cosx/sinx= 1 or sinx/cosx=1 .
We know that;
tanx = sinx/ cosx = 1
tanx = 1 .
Now, tan²x - tanx
= tanx ( tanx - 1 )
= 1 ( 1 - 1 )
= 1 * 0
= 0 .
(or)
tan²x-tanx
= 1 ² - 1
= 1 - 1
= 0
Therefore, For the given condition; tan²x-tanx = 0
cosx = sinx
Transposing the terms we get
cosx/sinx= 1 or sinx/cosx=1 .
We know that;
tanx = sinx/ cosx = 1
tanx = 1 .
Now, tan²x - tanx
= tanx ( tanx - 1 )
= 1 ( 1 - 1 )
= 1 * 0
= 0 .
(or)
tan²x-tanx
= 1 ² - 1
= 1 - 1
= 0
Therefore, For the given condition; tan²x-tanx = 0
Similar questions