Math, asked by aadharshini04, 8 months ago

If cosx=-(⅓) x lies in third quadrant then cos(x/2) will be (a)-1/✓3 (b)1/✓3 (c)-1/6 (d)1/6

Answers

Answered by sulagnapalit8263
5

Given:- cosx=-(⅓) ,x lies in third quadrant

To find:- the value of cos(x/2)

Solution:-

cosx=-(⅓) ,where x lies in third quadrant.

To get the value of cos(x/2) we need to use the equation 1+ cosx = 2cos²x/2

1 + cosx = 2 {cos}^{2}  \frac{x}{2}

or, \frac{1 + cosx}{2}  = {cos}^{2}  \frac{x}{2}

or, cos \frac{x}{2}  =  ±  \sqrt{ \frac{1 + cosx}{2} }

Now we get the value of cos(x/2).

We know that, cosx = -(⅓)

cos \frac{x}{2}  =  ±  \sqrt{ \frac{1 + ( -  \frac{1}{3} )}{2} }

cos \frac{x}{2}  =  ± \sqrt{ \frac{1}{3} }

\pi < x <  \frac{3\pi}{2} = >  \frac{\pi}{2}  <  \frac{x}{2}  <  \frac{3\pi}{4}

and cos is negative in second quadrant.

∴cos \frac{x}{2}  =   - \sqrt{ \frac{1}{3} }

Hence ,the option (a) - 1/√3 is correct.(Ans)

Answered by pulakmath007
55

SOLUTION

GIVEN

 \displaystyle \sf{} \cos x =  -  \frac{1}{3}  \:  \:  \:  \: and \:  \:

x lies in third quadrant

TO CHOOSE THE CORRECT OPTION

 \displaystyle \sf{} \cos  \frac{x}{2}  =

 \displaystyle \sf{}(a)  \:  \:  -  \frac{1}{ \sqrt{3} }

 \displaystyle \sf{}(b)  \:  \:   \frac{1}{ \sqrt{3} }

 \displaystyle \sf{}(c)  \:  \:  -  \frac{1}{6 }

 \displaystyle \sf{}(d)  \:  \:   \frac{1}{ 6 }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \displaystyle \sf{} \cos x  \: =  \: 2 {\cos}^{2}   \frac{x}{2}  - 1

EVALUATION

Here it is given that x lies in third quadrant

So

 \displaystyle \sf{} \:  {180}^{ \circ}  < x <  {270}^{ \circ}

 \implies \displaystyle \sf{} \:  {90}^{ \circ}  <  \frac{x}{2}  <  {135}^{ \circ}

 \therefore \:   \: \displaystyle \sf{}  \frac{x}{2}  \:  \:  \: lies \: in \: second \: quadrant

 \therefore \displaystyle \sf{} \:  \:   \cos\frac{x}{2}  \:  \: is \: negative

Now

 \displaystyle \sf{} \cos x =  -  \frac{1}{3}

 \implies \displaystyle \sf{}2 {\cos}^{2}   \frac{x}{2}  - 1 =  -  \frac{1}{3}

 \implies \displaystyle \sf{}2 {\cos}^{2}   \frac{x}{2}  = 1 -  \frac{1}{3}

 \implies \displaystyle \sf{}2 {\cos}^{2}   \frac{x}{2}  =  \frac{2}{3}

 \implies \displaystyle \sf{} {\cos}^{2}   \frac{x}{2}  =  \frac{1}{3}

 \implies \displaystyle \sf{} {\cos}   \frac{x}{2}  =   \pm \: \frac{1}{ \sqrt{3} }

 \because \displaystyle \sf{} \:  \:   \cos\frac{x}{2}  \:  \: is \: negative

 \therefore \displaystyle \sf{} \:  \:   \cos\frac{x}{2}   =  -  \frac{1}{ \sqrt{3} }

FINAL ANSWER

Hence the correct option is

 \displaystyle \sf{} \cos  \frac{x}{2}  =

 \displaystyle \sf{}(a)  \:  \:  -  \frac{1}{ \sqrt{3} }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

In a triangle, prove that

(b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions