Math, asked by atthiloveleen, 4 months ago

If cot 0 = root 7,
show that
cosec?e - sec 0 3
cosec?0 + sec?0 4​

Answers

Answered by shreyaaa1885
5

Givencotθ=

7

−−(1)

LHS =\frac{(cosec^{2}\theta-sec^{2}\theta)}{(cosec^{2}\theta+sec^{2}\theta)}LHS=

(cosec

2

θ+sec

2

θ)

(cosec

2

θ−sec

2

θ)

=\frac{\frac{1}{sin^{2}\theta}-\frac{1}{cos^{2}\theta}}{\frac{1}{sin^{2}\theta}+\frac{1}{cos^{1}\theta}}=

sin

2

θ

1

+

cos

1

θ

1

sin

2

θ

1

cos

2

θ

1

Multiply numerator and denominator by cos^{2}\thetacos

2

θ ,we get

=\frac{\frac{cos^{2}\theta}{sin^{2}\theta}-\frac{cos^{2}\theta}{cos^{2}\theta}}{\frac{cos^{2}\theta}{sin^{2}\theta}+\frac{cos^{2}\theta}{cos^{1}\theta}}=

sin

2

θ

cos

2

θ

+

cos

1

θ

cos

2

θ

sin

2

θ

cos

2

θ

cos

2

θ

cos

2

θ

=\frac{cot^{2}\theta-1}{cot^{2}\theta +1}=

cot

2

θ+1

cot

2

θ−1

=\frac{(\sqrt{7})^{2}-1}{(\sqrt{7})^{2}+1}=

(

7

)

2

+1

(

7

)

2

−1

/* From(1)*/

\begin{gathered}=\frac{7-1}{7+1}\\=\frac{6}{8}\\=\frac{3}{4}\\=RHS\end{gathered}

=

7+1

7−1

=

8

6

=

4

3

=RHS

•••♪

Similar questions