If cotθ=1/√3 then find the value of (1-cos²θ)/(1+cos²θ)
Answers
Answered by
4
i had used α instead of theta as cot α = 1/√3 & cot 60°=1/√3
⇔cot α=cot 60°
⇔ α=60°
now, there are two methods to solve
1. 1-cos²α/1+cos²α = 1-cos² 60°/1+cos²60°
⇒1-(1/2)²/1+(1/2)²
⇒1-(1/4)/1+(1/4)
⇒4-1/4+1
⇒3/5 Ans
2.1-cos²α/1+cos²α
⇒sin²α/1+cos²α
⇒(√3/2)²/1+(1/2)²
⇒3/4+1
⇒3/5 Ans
Hope it would be helpful to you
⇔cot α=cot 60°
⇔ α=60°
now, there are two methods to solve
1. 1-cos²α/1+cos²α = 1-cos² 60°/1+cos²60°
⇒1-(1/2)²/1+(1/2)²
⇒1-(1/4)/1+(1/4)
⇒4-1/4+1
⇒3/5 Ans
2.1-cos²α/1+cos²α
⇒sin²α/1+cos²α
⇒(√3/2)²/1+(1/2)²
⇒3/4+1
⇒3/5 Ans
Hope it would be helpful to you
Answered by
1
Answer:
3/5
Step-by-step explanation:
1-cos²α/1+cos²α
sin²α/1+cos²α
(√3/2)²/1+(1/2)²
3/4+1
3/5
Similar questions