Math, asked by khushjain3115, 7 months ago

.If cotθ = 2, then the value of the expression then find the value of Cot^2 θ+cosec^2 θ

Answers

Answered by akshayjaiswal156
0

Step-by-step explanation:

here is your answer.hope you like it

Attachments:
Answered by InfiniteSoul
8

SoluTion :-

\sf\implies cot\theta = 2

\sf{\bold{{\underline{\underline{cosec^2\theta -  cot^2\theta = 1 }}}}}

\sf{\bold{{\underline{\underline{cosec^2\theta =  cot^2\theta + 1 }}}}}

\sf\implies cot^2\theta + cosec^2\theta

\sf\implies cot^2\theta + cot^2\theta + 1

\sf\implies 2^2 + 2^2+ 1

\sf\implies 4 + 4 + 1

\sf\implies 9

\sf{\bold{\blue{\underline{\underline{cot^2\theta + cosec^2\theta = 9 }}}}}

\sf{\bold{\green{\underline{\underline{Extra\:\:Information}}}}}

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0  \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $    \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ &  1 &  $ \dfrac{1}{ \sqrt{3} } $ &0 \\  \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\  \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1  \\  \cline{1 - 6}\end{tabular}}

Similar questions