Math, asked by Anonymous, 11 months ago

If cot θ = -3/2 , find cos θ.

Answers

Answered by srijansarvshresth123
0

Answer:

cot $=b/p

cos $=b/h

=-3/(13)^1/2

Answered by Draxillus
0

Given,

 \cot( \alpha )  =  \frac{ - 3}{2}

We know,

 \tan( \alpha )  =  \frac{1}{ \cot( \alpha ) }

Thus,

 \tan( \alpha ) =  \frac{ - 2}{3}

Also,

 {  \sec( \alpha ) ) }^{2}  -  { \tan( \alpha ) }^{2}  = 1 \\  =  >  { \sec( \alpha ) }^{2}  = 1 +  { \frac{ - 2}{ {3}^{2} } }^{2}  \\  =   \frac{13}{9}  =  \\  \sec( \alpha   )  =  \frac{ \sqrt{13} }{3}

Hence ,

 \cos( \alpha ) =  \frac{3}{ \sqrt{13} } )

Regards

Kshitij

Similar questions