Math, asked by DJDJDJDJDJDJDJDJ, 3 months ago

if cotθ = 7/8 evaluate
1) ((1 + sinθ)( 1 - sinθ)) / ((1 + sinθ)(1 - sinθ))

Don't give copy answer
Don't give irrelevant answer​

Answers

Answered by ItzMarvels
9

Correct Question

 \large \sf{if \:  \cotθ =  \frac{7}{8} \:  \: then \: evaluate:  } \\  \\  \large \sf{1)  \large\frac{(1 +  \sinθ)(1 -  \sinθ)  }{(1 +  \cosθ)(1 -  \cosθ)} }

Answer

First we will find Hypotenuse.

 \implies \large \cal{ \:H  = \sqrt{(8k) ^{2} - (7k)^{2} } } \\ \\\implies \large \cal{ \: H = \sqrt{64k ^{2} - 49k^{2} } } \\ \\\implies \large \cal{ \:  H= \sqrt{113k^{2} } } \\ \\ \implies \large \cal \red {\boxed{ \:  H= \sqrt{113} \: {k } }}

Now we will find sinθ and cosθ

 \implies \large \cal{ \sinθ = {\large\frac{P}{H}} = {\large\frac{8k}{ \sqrt{ 113} \: k}}\implies \large \red{ \frac{5}{ \sqrt{ 113}} }} \\ \\ \implies \large \cal{ \cosθ = {\large\frac{B}{H}} = {\large\frac{7k}{ \sqrt{ 113} \: k}}\implies \large\red{ \frac{7}{ \sqrt{ 113}} }}

Now we will use this formula a² - b² =(a + b)(a - b)

   \implies\large\frac{ \large(1)^{2}  -   ({\sin^{2} }{θ})}{ \large(1)^{2} -  ({\cos}^{2} {θ}) }  \\  \\ \implies\large\frac{ \large1 -   ({\sin^{2} }{θ})}{ \large1-  ({\cos}^{2} {θ}) }

Now put values in the formula.

 \implies \frac{ \large{1 - ( \frac{8}{ \sqrt{113} })^{2}  }}{ \large{1 - (\frac{7}{ \sqrt{113} })^{2}}}  \\  \\ \implies \frac{ \large{1 - \frac{64}{113}}}{ \large{1 - \frac{49}{{113} }}}

\implies \frac{ \large{1 - \frac{64}{ {113}}}}{ \large{1 - \frac{49}{{ {113}} }}} \\  \\  \implies \frac{ \large{ \frac{49}{ { \cancel{113}}}}}{ \large{ \frac{64}{{ { \cancel{113}}} }}} \\  \\  \implies \red{\boxed{ \frac{ \large 49}{ \large{64} }} \:  \: \:  \:  \:  Ans}

Attachments:
Similar questions