if cot θ = 7/8, evaluate: (i) (1+ sin θ )(1- sin θ)/ (1+ cos θ)(1- cos θ) (ii) cot^6 θ
Answers
Answered by
2
I will use q symbol as theta below
cotq=7/8 ie b/p
b=7,p=8
h²=b²+p²
h² =7²+8²
=49+64
=113
h²=113
h=√113
(1)(1+sinq)(1-sinq) /(1+cosq)(1-cosq)
(1-sin²q) / (1-cos²q)
{1-(8/√113)²} / {1-(7/√113)²}
1-64/113 / 1-49/113
113-64/113 / 113-49/113
49/113 / 64/113
49/64
(2)
(7/8)^6
117649/262144
cotq=7/8 ie b/p
b=7,p=8
h²=b²+p²
h² =7²+8²
=49+64
=113
h²=113
h=√113
(1)(1+sinq)(1-sinq) /(1+cosq)(1-cosq)
(1-sin²q) / (1-cos²q)
{1-(8/√113)²} / {1-(7/√113)²}
1-64/113 / 1-49/113
113-64/113 / 113-49/113
49/113 / 64/113
49/64
(2)
(7/8)^6
117649/262144
Answered by
3
Given:
We know that,
From Pythagoras theorem,
hypotenuse² = opposite side² + adjacent side²
hypotenuse² = 8² + 7²
hypotenuse² = 64 + 49 = 113
hypotenuse² = ⬇️
Solution:
We have,
a² - b² = (a+b)(a-b)
Similarly,
Similar questions
Math,
7 months ago
Social Sciences,
7 months ago
Computer Science,
7 months ago
Accountancy,
1 year ago
Math,
1 year ago
Math,
1 year ago