Math, asked by sophusonu, 1 year ago

if cot θ = 7/8, evaluate: (i) (1+ sin θ )(1- sin θ)/ (1+ cos θ)(1- cos θ) (ii) cot^6 θ

Answers

Answered by Anonymous
2
I will use q symbol as theta below
cotq=7/8 ie b/p
b=7,p=8
h²=b²+p²
h² =7²+8²
=49+64
=113
h²=113
h=√113
(1)(1+sinq)(1-sinq) /(1+cosq)(1-cosq)
(1-sin²q) / (1-cos²q)
{1-(8/√113)²} / {1-(7/√113)²}
1-64/113 / 1-49/113
113-64/113 / 113-49/113
49/113 / 64/113
49/64
(2)
 { cotq}^{6}
(7/8)^6
117649/262144
Answered by BrainlyRuby
3

Given:

 \tt \: cot \theta =  \dfrac{7}{8}  \\  \\  \tt \: tan \theta =  \dfrac{1}{cot \theta}  =  \dfrac{8}{7}

We know that,

 \tt tan \theta =  \dfrac{opposite \: side}{adjacent \: side}

From Pythagoras theorem,

hypotenuse² = opposite side² + adjacent side²

hypotenuse² = 8² + 7²

hypotenuse² = 64 + 49 = 113

hypotenuse² = ⬇️

 \tt  \sqrt{113}

Solution:

 \tt \dfrac{(1 +  \sin\theta)(1 -  \sin\theta )}{(1 +  \ \cos \theta)(1 -   \cos \theta )}

We have,

a² - b² = (a+b)(a-b)

Similarly,

 \tt  (1 +  \ {sin}^{2}  \theta) = (1 +  { sin \theta \: } )(1 - sin \theta)

\tt  (1  -   \ {cos}^{2}  \theta) = (1 +  { cos \theta \: } )(1 - cos \theta)

 \tt =  \dfrac{{1 -( \frac{8}{ \sqrt{113} }^){2}  }  }{1 - \frac{7}{{ \sqrt{113}  }^{2} }  } \\  \\  =  \dfrac{49}{64}

Similar questions