Math, asked by madhumohan11, 1 year ago

If cot θ = 7/8, the evaluate {(1 + sin θ)*(1 - sin θ)}/{(1 + cos θ)*(1 - cos θ)}​

Answers

Answered by sugha58
6

let theta =x.

given,

cot x=7/8

=adjacent side/opposite

side

hypotenuse=

 \sqrt{(7)^{2} }  + (8) {}^{2}

=

 \sqrt{49 + 64}

=

 \sqrt{113}

Sin x=8/

 \sqrt{113}

sin^2 x= 64/113

cos x=7/

 \sqrt{113}

cos ^2 x =49/113

=(1+sin x)(1-sin x)/(1+cos x)(1- cosx)

=(1-sin^2 x)/(1-cos^2 x)

=(1-64/113)/(1-49/113)

=(113-64/113)/(113-49/113)

=(49/113)/(64/113)

=49/64

(or)

=(7/8)^2

Answered by Anonymous
16

Given:

  •  \sf { cot  \theta = \dfrac{7}{8} }

We have to evaluate,

  •   \sf {  \dfrac{(1 +  \sin\theta)(1 -  \sin  \theta)}{(1 +\cos\theta)(1 -  \cos \theta) } }

Calculation:

 \sf { \dfrac{(1 +  \sin\theta)(1 -  \sin  \theta)}{(1 +\cos\theta)(1 -  \cos \theta) } }

 \sf { : \implies  \dfrac{1 -    \cancel{\sin \theta}  + \cancel{\sin \theta}  - {\sin}^{2} \theta }{1   - \cancel {\cos \theta} +\cancel{ \cos \theta} -  { \cos}^{2} \theta} }

 \sf { : \implies \dfrac{1 -  { \sin }^{2}  \theta}{1 -  {  \cos}^{2}  \theta} }

NOW, let ABC be a triangle , right angled at B

Then,

 \sf { : \implies cot  \theta = \dfrac{7}{8}  ( Given )}

 \sf { : \implies \dfrac{Base}{Perpendicular} =\dfrac{BC}{AB}= \dfrac{7}{8}  }

Let AB be 8x and BC be 7x

Applying pythagoras property-

 \sf\red { {(H)}^{2} = {(B)}^{2} + {(P)}^{2} }

 \sf { \longrightarrow {(H)}^{2} = {(7x)}^{2} + {(8x)}^{2} }

 \sf { \longrightarrow  {(H)}^{2} = {49x}^{2} + {64x}^{2} }

 \sf { \longrightarrow {(H)}^{2} = {113x}^{2} }

 \sf { \longrightarrow  H = \sqrt{{113x}^{2}} = x \sqrt{113}  }

Perpendicular = 8x

Base = 7x

Hypotenuse =  \sf{ x \sqrt{113}}

__________

Now we have to find the value of

  •  \sf {\dfrac{1 -  { \sin }^{2}  \theta}{1 -  {  \cos}^{2}  \theta} ( Equation \: 1 ) }

 \sf {:\implies \sin \theta = \dfrac{P}{H} = \dfrac{ 8 \cancel x}{ \cancel x \sqrt{113} } }

 \sf {:\implies \cos \theta = \dfrac{B}{H} = \dfrac{ 7 \cancel x}{ \cancel x \sqrt{113 } } }

Now put the value of  \rm { \sin \theta } and  \rm { \cos \theta } in the 1st equation.

 \sf\blue { : \implies \dfrac{1 - (  { \dfrac{8}{ \sqrt{113} } )}^{2} }{1 -  (  { \dfrac{7}{ \sqrt{113} } )}^{2}} }

 \sf { : \implies \dfrac{1 -   \dfrac{64}{113} }{1 -   \dfrac{49}{113} } }

 \sf { : \implies  \dfrac{ \dfrac{113 - 64}{113} }{ \dfrac{113 - 49}{113} } }

 \sf { : \implies  \dfrac{ \dfrac{49}{\cancel {113}} }{ \dfrac{64}{\cancel {113}} } }

 \sf\red {  : \implies \dfrac{49}{64} \: Ans.}

___________________________

Attachments:
Similar questions