Math, asked by UselessFellow, 16 days ago

If cot \theta + cosec \theta = a , then prove that \bf{(a^2+1)cos\theta+(a^2+1)sin\theta=(a+1)^2-2

Answers

Answered by MrImpeccable
10

ANSWER:

Given:

  • cot θ + cosec θ = a

To Prove:

  • (a² + 1)cos θ + (a² + 1)sin θ = (a + 1)² - 2

Proof:

We are given that,

\implies \cot\theta+\csc\theta=a

We need to prove that,

\implies (a^2+1)\cos\theta+(a^2+1)\sin\theta=(a+1)^2-2

Taking LHS,

\implies (a^2+1)\cos\theta+(a^2+1)\sin\theta

Now, we take (a² + 1) common,

\implies (a^2+1)(\cos\theta+\sin\theta)

Substituting the value of a,

\implies [(\cot\theta+\csc\theta)^2+1][\cos\theta+\sin\theta]

As,

\hookrightarrow (x+y)^2=x^2+y^2+2xy

So,

\implies [(\cot\theta)^2+(\csc\theta)^2+2(\cot\theta)(\csc\theta)+1][\cos\theta+\sin\theta]

\implies [\cot^2\theta+\csc^2\theta+2\cot\theta\csc\theta+1][\cos\theta+\sin\theta]

As,

\hookrightarrow \cot\phi=\dfrac{\cos\phi}{\sin\phi}\:\:\&\:\:\csc\phi=\dfrac{1}{\sin\phi}

So,

\implies [\cot^2\theta+\csc^2\theta+2\cot\theta\csc\theta+1][\cos\theta+\sin\theta]

\implies \left[\left(\dfrac{\cos\theta}{\sin\theta}\right)^2+\left(\dfrac{1}{\sin\theta}\right)^2+2\left(\dfrac{\cos\theta}{\sin\theta}\right)\left(\dfrac{1}{\sin\theta}\right)+1\right]\bigg[\cos\theta+\sin\theta\bigg]

\implies \left[\dfrac{\cos^2\theta}{\sin^2\theta}+\dfrac{1}{\sin^2\theta}+\dfrac{2\cos\theta}{\sin^2\theta}+1\right]\bigg[\cos\theta+\sin\theta\bigg]

Taking LCM,

\implies \left(\dfrac{\cos^2\theta+1+2\cos\theta+\sin^2\theta}{\sin^2\theta}\right)\bigg(\cos\theta+\sin\theta\bigg)

Rearranging,

\implies \left(\dfrac{\cos^2\theta+\sin^2\theta+1+2\cos\theta}{\sin^2\theta}\right)\bigg(\cos\theta+\sin\theta\bigg)

As,

\hookrightarrow\cos^2\phi+\sin^2\phi=1

So,

\implies \left(\dfrac{(\cos^2\theta+\sin^2\theta)+1+2\cos\theta}{\sin^2\theta}\right)\bigg(\cos\theta+\sin\theta\bigg)

\implies \left(\dfrac{1+1+2\cos\theta}{\sin^2\theta}\right)\bigg(\cos\theta+\sin\theta\bigg)

\implies \left(\dfrac{2+2\cos\theta}{\sin^2\theta}\right)\bigg(\cos\theta+\sin\theta\bigg)

\implies \dfrac{(2+2\cos\theta)(\cos\theta+\sin\theta)}{\sin^2\theta}

Opening the brackets,

\implies \dfrac{2\cos\theta+2\sin\theta+2\cos^2\theta+2\cos\theta\sin\theta}{\sin^2\theta}

As,

\hookrightarrow\cos^2\phi=1-\sin^2\phi

So,

\implies \dfrac{2\cos\theta+2\sin\theta+2\cos^2\theta+2\cos\theta\sin\theta}{\sin^2\theta}

\implies \dfrac{2\cos\theta+2\sin\theta+2(1-\sin^2\theta)+2\cos\theta\sin\theta}{\sin^2\theta}

\implies \dfrac{2\cos\theta+2\sin\theta+2-2\sin^2\theta+2\cos\theta\sin\theta}{\sin^2\theta}

We can rewrite it as,

\implies \dfrac{2+2\cos\theta\sin\theta+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{1+1+2\cos\theta\sin\theta+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

As,

\hookrightarrow1=\cos^2\phi+\sin^2\phi

So,

\implies \dfrac{1+(1)+2\cos\theta\sin\theta+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{1+\sin^2\theta+\cos^2\theta+2\cos\theta\sin\theta+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{\sin^2\theta+\cos^2\theta+2\cos\theta\sin\theta+1+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

As,

\hookrightarrow x^2+y^2+2xy=(x+y)^2

So,

\implies \dfrac{(\sin^2\theta+\cos^2\theta+2\cos\theta\sin\theta)+1+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{(\sin\theta+\cos\theta)^2+1+2\cos\theta+2\sin\theta-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{(\sin\theta+\cos\theta)^2+1+2(\cos\theta+\sin\theta)-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{(\sin\theta+\cos\theta)^2+1+2(\sin\theta+\cos\theta)-2\sin^2\theta}{\sin^2\theta}

We can rewrite it as,

\implies \dfrac{(\sin\theta+\cos\theta)^2+1^2+2(\sin\theta+\cos\theta)(1)-2\sin^2\theta}{\sin^2\theta}

As,

\hookrightarrow x^2+y^2+2xy=(x+y)^2

So,

\implies \dfrac{[(\sin\theta+\cos\theta)^2+1^2+2(\sin\theta+\cos\theta)(1)]-2\sin^2\theta}{\sin^2\theta}

\implies \dfrac{(\sin\theta+\cos\theta+1)^2-2\sin^2\theta}{\sin^2\theta}

So,

\implies \dfrac{(\sin\theta+\cos\theta+1)^2}{\sin^2\theta}-\dfrac{2\sin^2\theta}{\sin^2\theta}

On simplifying,

\implies \dfrac{(\sin\theta+\cos\theta+1)^2}{\sin^2\theta}-2

\implies \left(\dfrac{\sin\theta+\cos\theta+1}{\sin\theta}\right)^2-2

So,

\implies \left(\dfrac{\sin\theta}{\sin\theta}+\dfrac{\cos\theta}{\sin\theta}+\dfrac{1}{\sin\theta}\right)^2-2

As,

\hookrightarrow \dfrac{\cos\phi}{\sin\phi}=\cot\phi\:\:\&\:\:\dfrac{1}{\sin\phi}=\csc\phi

So,

\implies \left(1+\dfrac{\cos\theta}{\sin\theta}+\dfrac{1}{\sin\theta}\right)^2-2

\implies (1+\cot\theta+\csc\theta)^2-2

\implies (\cot\theta+\csc\theta+1)^2-2

But, we are given that,

\implies \cot\theta+\csc\theta=a

So,

\implies (\cot\theta+\csc\theta+1)^2-2

\implies (a+1)^2-2

But,

\implies RHS=(a+1)^2-2

As, LHS=RHS,

HENCE PROVED!!!

Similar questions