Math, asked by Cheshta, 1 year ago

If cot theta= 15/8. Evaluate-
(2 + 2 sin theta)(1- sin theta) / (1 + cos theta)(2- 2 cos theta)


Cheshta: PLzz answer my ques. its really important for me!!!

Answers

Answered by Anonymous
249

here is your answer

hope its help you

Attachments:
Answered by skyfall63
209

Answer:

\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}=\frac{225}{64}

Step-by-step explanation:

By using Pythagoras theorem, (in a right-angled triangle, squaring the longest side is eventually equals to sum of squares of other two sides.)

\sin \theta=\frac{\text {Opposite}}{\text {Hypotenuse}}

\cos \theta=\frac{\text {Adjacent}}{\text {Hypotenuse}}

\cot \theta=\frac{\text {Adjacent}}{\text {Opposite}}

\cot \theta=\frac{15}{8}

\text{Hypotenuse}^{2}=\text { Opposite }^{2}+\text { Adjacent }^{2}

H^{2}=O^{2}+A^{2}

\Rightarrow 8^{2}+15^{2}

\Rightarrow 64+225

H^{2} \Rightarrow 289

H=\sqrt{289}

H=17

Then, the values of \sin \theta and \cos \theta are,

\sin \theta=\frac{\text {Opposite}}{\text {Hypotenuse}}

\sin \theta=\frac{8}{17}

\cos \theta=\frac{\text {Adjacent}}{\text {Hypotenuse}}

\cos \theta=\frac{15}{17}

Then, putting values of \sin \theta and \cos \theta,

=\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}

=\frac{\left(2+2\left(\frac{8}{17}\right)\right)\left(1-\frac{8}{17}\right)}{\left(1+\left(\frac{15}{17}\right)\right)\left(2-2\left(\frac{15}{17}\right)\right)}

=\frac{\left(2+\frac{16}{17}\right)\left(\frac{9}{17}\right)}{\left(\frac{32}{17}\right)\left(2-\frac{30}{17}\right)}

=\frac{\left(\frac{50}{17}\right)\left(\frac{9}{17}\right)}{\left(\frac{32}{17}\right)\left(\frac{4}{17}\right)}

=\frac{\left(\frac{450}{289}\right)}{\left(\frac{128}{289}\right)}

=\frac{450}{289} \times \frac{289}{128}

=\frac{450}{128}

\therefore \frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}=\frac{225}{64}

Similar questions