History, asked by ojastejask, 9 months ago

if cot theta=3 evaluate cosec theta(cos theta+sec theta) by sec theta sin theta.

Answers

Answered by rkelectronik
2

hope it is helpful to u thank u for question....

Attachments:
Answered by CharmingPrince
4

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

\purple{If \:cot \theta=3 \:evaluate \displaystyle{\frac{cosec \theta(cos \theta+sec \theta)}{sec \theta sin \theta}}}

☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Simplifying:}}}

\purple{\implies \displaystyle{\frac{cosec \theta(cos \theta+sec \theta)}{sec \theta sin \theta}}}

\implies \displaystyle{\frac{1 × (cos \theta+sec \theta)}{sin \theta ×sec \theta × sin \theta}}

\blue{\left( \because cosec \theta = \displaystyle{\frac{1}{sin \theta}} \right)}

\implies\displaystyle{\frac{cos \theta(cos \theta+sec \theta)}{sin^2 \theta}}

\blue{\left( \because sec \theta =\displaystyle{\frac{1}{cos \theta}} \right)}

\boxed{\red{\bold{By\:distributive\: property: }}}

\implies \displaystyle{\frac{cos \theta × cos \theta+ cos \theta × sec \theta}{sin^2 \theta}}

\implies \displaystyle{\frac{cos^2 \theta + cos \theta × \frac{1}{cos \theta}}{sin^2 \theta}}

\purple{\implies \displaystyle{\frac{cos^2 \theta + 1}{sin^2 \theta}}}

\purple{\implies \displaystyle{\frac{cos^2 \theta}{sin^2 \theta}} + \frac{1}{sin^2 \theta}}

\implies cot^2 \theta + cosec^2 \theta

\blue{ \left( \because \displaystyle{\frac{cos^2 \theta}{sin^2 \theta}} = cot^2 \theta \right)}

\implies cot^2 \theta + 1 + cot^2 \theta

\blue {\left( \because 1 + cot^2 \theta = cosec^2 \theta; \: by \: identity \right)}

\implies 2cot^2 \theta + 1

\boxed{\red{\bold{Putting \: value \: of \: cot\theta:}}}

\green{\implies 2(3)^2 + 1}

\green{\implies 2×9+1}

\green{\implies 18 +1}

\green{\bold{\implies The \: answer \: is \:{\boxed{\boxed{\bold{19}}}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions