Math, asked by punithchowdary3432, 1 year ago

If cot theta = 4/3, then find the value of sin theta, cos theta and cosec theta in first quadrant.

Answers

Answered by hukam0685
30

 \cot(theta)  =  \frac{4}{3}   =  \frac{base}{perpendicular} \\ {sin(theta)} =  \frac{perpendicular}{hypotenuse}    \\  \cos(theta)  = \frac{base}{hypotenuse}   \\ \: hypotenuse =  \sqrt{ {4}^{2}  +   {3}^{2}  }  =  \sqrt{16 + 9}  \\  =  \sqrt{25}  = 5 \\  \sin(theta)  =  \frac{3}{5} \\  \cos(theta)  =  \frac{4}{5}  \\ cosec(theta) =  \frac{1}{ \sin(theta) }  \\  =  \frac{5}{3}  \\  all \: being \: positive \: because \: of \: in \: first \: quadrant
Answered by adityaaditya16505
0

Step-by-step explanation:

ot(theta)=

3

4

=

perpendicular

base

sin(theta)=

hypotenuse

perpendicular

cos(theta)=

hypotenuse

base

hypotenuse=

4

2

+3

2

=

16+9

=

25

=5

sin(theta)=

5

3

cos(theta)=

5

4

cosec(theta)=

sin(theta)

1

=

3

5

allbeingpositivebecauseofinfirstquadrant

Similar questions