If cot theta =7/8
evaluate
(1 + sin 6)(1-sino)
(1 + cos ) (1 - cos )
Answers
Answered by
3
Answer:
49 /64
Step-by-step explanation:
cotA = 7/8 = base /perpendicular
h = √(7^2 + 8^2) = √113
sinA = 8/√113 & cosA = 7/√113
(1+ sinA)(1- sinA)/(1 + cosA)(1 - cosA )
= (1^2- sin^2A)/(1^2 - cos^2A)
=[1- (8/√113)^2]/[1 - (7/√113)^2]
= 49/113/64/113 = 49/64
Answered by
3
Answer:
Step-by-step explanation:
given is cotθ=7/8
opposite side = 8 and adjacent side=7
so, hypotenuse will be square root of sum of sqaures of 7 and 8
i.e sqrt7^2+8^2=√113 so now sinθ=8/√113 and cosθ=7/√113
(1+sinθ)(1-sinθ)/(1+cotθ)(1-cosθ)=1-sin^2θ/1+cotθ(1-cosθ)
= 1-64/113/1+7/8(1-7/√113)
on solving we get 49/(√113-7)√113
Similar questions