If cot theta =p+1/p prove that cosec theta+ cot theta= 2p or 1/2p
Answers
Answered by
1
Answer:
Step-by-step explanation:
cot A =p+1/p .....(i)
cot²A =(p+1/p)²
cot²A =(p+1/p)²
cosec²A -1 =(p+1/p)²
cosec²A = (p+1/p)² +1
cosec A = √[(p+1/p)² +1] .....(ii)
adding (i) and (ii)
cot A + cosec A = p+1/p + √[(p+1/p)² +1]
cot A + cosec A =p+1/p + √[p²-2 + 1/p² - 1]
cot A + cosec A = [p²+1]/p + √[(p∧4 - 3p² +1 )/p²]
cot A + cosec A = [p²+1 + √(p∧4 - 3p² +1 )]/p
cot A + cosec A = [p²+1 ± (p² - 1)]/p
cot A + cosec A = [p²+1+p²-1]/p , [p²+1-p²+1]/p}
cot A + cosec A = 2p , 1/2p
Similar questions