If cot2θ (1 – 3 sec θ + 2 sec2θ) = 1, then 'θ' can be :
Answers
Answered by
2
Step-by-step explanation:
The second and third identities can be obtained by manipulating the first. The identity 1+cot2θ=csc2θ1+cot2θ=csc2θ is found by rewriting the left side of the equation in terms of sine and cosine.
Prove: 1+cot2θ=csc2θ1+cot2θ=csc2θ
Answered by
1
Answer:
Step-by-step explanation:
Given, cot
2
θ(
1+sinθ
secθ−1
)+sec
2
θ(
1+secθ
sinθ−1
)
=
sinθ
2
cosθ
2
×
(1+sinθ)
(
cosθ
1−cosθ
)
+
cos
2
θ
1
⎝
⎜
⎜
⎛
cosθ
cosθ+1
sinθ−1
⎠
⎟
⎟
⎞
=
(1−cos
2
θ)
cosθ
×
(1+sinθ)
(1−cosθ)
+
cosθ
1
(
cosθ+1
sinθ−1
)
=
(1+cosθ)
cosθ
×
(1+sinθ)
1
+
cosθ(1+cosθ)
sinθ−1
=
(1+cosθ)(1+sinθ)cosθ
cosθ
2
+(1+sinθ)(sinθ−1)
=
(1+cosθ)(1+sinθ)cosθ
cosθ
2
+sinθ
2
−1
=0.
Similar questions
Math,
1 month ago
Geography,
1 month ago
Math,
1 month ago
Social Sciences,
2 months ago
Math,
2 months ago
Computer Science,
10 months ago
Math,
10 months ago