If cotx=2mn/m^2-n^2 then cosx=?
Answers
Answered by
0
cotx=B/P=2mn/m^2-n^2
cosx=B/H=2mn/H
cosx=2mn/√[(2mn)^2+(m^2-n^2)^2]
cosx=2mn/√(4m^2n^2+m^4+n^4-2m^2n^2)
cosx=2mn/√(m^4n^4-2m^2n^2)
cosx=2mn/m^2+n^2
cosx=B/H=2mn/H
cosx=2mn/√[(2mn)^2+(m^2-n^2)^2]
cosx=2mn/√(4m^2n^2+m^4+n^4-2m^2n^2)
cosx=2mn/√(m^4n^4-2m^2n^2)
cosx=2mn/m^2+n^2
VIDHII:
oh sry
Answered by
3
cot x=adjacent side/opposite side
=2mn/m²-n²
∴adjacent side=2mn
opposite side=m²-n²
hypotenuse=√[(2mn)²+(m²-n²)²]
=√(4m²n²+m⁴+n⁴-2m²n²)
=√(m⁴+n⁴+2m²n²)
=√[(m²+n²)²]
=m²+n²
cos x=adjacent side/hypotenuse
=2mn/m²+n²
Hope it helps u :-)
=2mn/m²-n²
∴adjacent side=2mn
opposite side=m²-n²
hypotenuse=√[(2mn)²+(m²-n²)²]
=√(4m²n²+m⁴+n⁴-2m²n²)
=√(m⁴+n⁴+2m²n²)
=√[(m²+n²)²]
=m²+n²
cos x=adjacent side/hypotenuse
=2mn/m²+n²
Hope it helps u :-)
Similar questions
Accountancy,
8 months ago
Math,
8 months ago
Economy,
8 months ago
Physics,
1 year ago
Math,
1 year ago