Math, asked by gkGeetakumari6711, 1 year ago

If cotx=5/12 then since+1/cotx+secx=?

Answers

Answered by MaheswariS
0

Answer:

\frac{sinx+1}{cotx+secx}=\frac{12}{5}

Step-by-step explanation:

Given:

cotx=\frac{5}{12}

cosec^2x=1+cot^2x

cosec^2x=1+(\frac{5}{12})^2

cosec^2x=1+\frac{25}{144}

cosec^2x=\frac{144+25}{144}

cosec^2x=\frac{169}{144}

cosecx=\frac{13}{12}

sinx=\frac{12}{13}

secx=sinx.cotx

secx=(\frac{12}{13})(\frac{5}{12})

secx=\frac{5}{13}

Now,

\frac{sinx+1}{cotx+secx}

=\frac{\frac{12}{13}+1}{\frac{5}{12}+\frac{5}{13}}

=\frac{\frac{12+13}{13}}{5(\frac{1}{12}+\frac{1}{13})}

=\frac{\frac{25}{13}}{5(\frac{13+12}{12*13})}

=\frac{\frac{25}{13}}{(\frac{125}{12*13})}

=\frac{25}{13}(\frac{12*13}{125})

=\frac{12}{5}

Similar questions