Math, asked by rameshmaraka55, 4 months ago

If cube of 5 can be cwritten in the form amon
amt or amt8, then in (mis positive Integer) =​

Answers

Answered by ritikraj7873
2

Answer:

As per Euclid's Division Lemma

If a and b are 2 positive integers, then

a=bq+r

Where 0≤r≤b

Let b=8,

Therefore,

a=8q+r

r=0,1,3,5

Case I:- r=0

Therefore,

a=8q

Cubing both sides, we get

(a)

3

=(8q)

3

a

3

=512q

3

⇒a

3

=8×(64q

3

)

Here m=64q

3

Case II:- r=1

Therefore,

a=8q+1

Cubing both sides, we get

(a)

3

=(8q+1)

3

a

3

=(8q)

3

+(1)

3

+3(8q)

2

(1)+3(8q)(1)

2

a

3

=512q

3

+1+192q

2

+24q

⇒a

3

=8(64q

3

+24q

2

+3q)+1

Here m=(64q

3

+24q

2

+3q)

Case III:- r=3

Therefore,

a=8q+3

Cubing both sides, we get

(a)

3

=(8q+3)

3

a

3

=(8q)

3

+(3)

3

+3(8q)

2

(3)+3(8q)(3)

2

a

3

=512q

3

+27+576q

2

+216q

⇒a

3

=8(64q

3

+72q

2

+27q+3)+3

Here m=(64q

3

+72q

2

+27q+3)

Case IV:- r=5

Therefore,

a=8q+5

Cubing both sides, we get

(a)

3

=(8q+5)

3

a

3

=(8q)

3

+(5)

3

+3(8q)

2

(5)+3(8q)(5)

2

a

3

=512q

3

+125+960q

2

+600q

⇒a

3

=8(64q

3

+120q

2

+75q+15)+5

Here m=(64q

3

+120q

2

+75q+15)

Case V:- r=7

Therefore,

a=8q+7

Cubing both sides, we get

(a)

3

=(8q+7)

3

a

3

=(8q)

3

+(7)

3

+3(8q)

2

(7)+3(8q)(7)

2

a

3

=512q

3

+343+1344q

2

+1176q

⇒a

3

=8(64q

3

+168q

2

+147q+42)+7

Here m=(64q

3

+168q

2

+147q+42)

Thus cube of any positive number can be expressed as 8m or 8m+1 or 8m+3 or 8m+5 or 8m+7.

Hence proved.

Similar questions